Online Optimization of Normalized CPGs for a Multi-Joint Robotic Fish
文献类型:会议论文
作者 | Tong R(仝茹)![]() ![]() ![]() ![]() |
出版日期 | 2021-07 |
会议日期 | 2021年7月 |
会议地点 | 中国,上海 |
英文摘要 | As a popular control rhythm of the multi-joint robotic fish, Center Pattern Generators (CPGs) plays an important role for motion performance. However, its optimal parameters are tough to seek through traditional methods. In order to address this problem, we propose an online optimization method for CPG parameters, including a novel normalized CPGs (N-CPGs) and a learning-based optimization algorithm. Via N-CPGs, the network parameters can be fully decoupled, which provides a great convenience for model parameter optimization. In particular, by applying the established dynamic model of the robotic fish, we use the deep Q network (DQN) to optimize the N-CPGs, aiming at improving the speed performance. Finally, extensive simulation results verify the effectiveness of proposed method, laying a solid foundation for real-time online control optimization of versatile motion modes in complex application scenarios. |
源URL | [http://ir.ia.ac.cn/handle/173211/57604] ![]() |
专题 | 复杂系统管理与控制国家重点实验室_水下机器人 |
通讯作者 | Yu JZ(喻俊志) |
作者单位 | 1.北京大学 2.中国科学院大学 3.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Tong R,Wu ZX,Wang J,et al. Online Optimization of Normalized CPGs for a Multi-Joint Robotic Fish[C]. 见:. 中国,上海. 2021年7月. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。