中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive Multi-Agent Coordination among Different Team Attribute Tasks via Contextual Meta-Reinforcement Learning

文献类型:会议论文

作者Huang, Shangjing1,2; Zhao, Zijie1,2; Zhu, Yuanheng1,2; Zhao, Dongbin1,2
出版日期2024-05
会议日期2024年5月17-19日
会议地点河南开封
英文摘要

In the realm of Multi-Agent Reinforcement Learning (MARL), the challenge of ensuring effective coordination indifferent multi-agent teams remains a significant hurdle. Existing methods often fall short in generalizing learned policies tonovel team compositions, sizes, and capabilities. Addressing this gap, our study focuses on systems with variable and obscureattribute compositions, harnessing a context-based meta-reinforcement learning framework. The approach is twofold: contextinference and context-based decision-making. Agents interpret historical data to identify the system’s attribute composition,guiding their collective efforts. The accuracy of these inferences is crucial, prompting us to integrate contrastive learning torefine the context inference network via unsupervised training. In the process of decision-making, agents integrate the inferredcontext with the observation features to select the optimal strategy. Our empirical results underscore the method’s efficacy inbolstering decision-making efficiency and precision amidst attribute diversity, marking a significant stride in adaptive teamingfor robust multi-robot deployments in dynamic real-world scenarios.

源URL[http://ir.ia.ac.cn/handle/173211/57623]  
专题复杂系统管理与控制国家重点实验室_深度强化学习
通讯作者Zhu, Yuanheng
作者单位1.中国科学院自动化研究所
2.中国科学院大学
推荐引用方式
GB/T 7714
Huang, Shangjing,Zhao, Zijie,Zhu, Yuanheng,et al. Adaptive Multi-Agent Coordination among Different Team Attribute Tasks via Contextual Meta-Reinforcement Learning[C]. 见:. 河南开封. 2024年5月17-19日.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。