中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SELF-SUPERVISED MATCHING NETWORK BASED ON FREQUENCY DOMAIN INFORMATION GUIDANCE FOR REMOTE SENSING IMAGE REGISTRATION

文献类型:会议论文

作者Zhou YX(周雨欣)1,2; Wan L(万玲)1; Ma L(马雷)1
出版日期2024
会议日期Jul 7, 2024 - Jul 12, 2024
会议地点Athens, Greece
英文摘要

Remote sensing image registration is very important for multi-temporal remote sensing data analysis. However, multi-temporal images have different radiation and geometric features, which leads to inadequate extraction of keypoints and unrobust descriptor construction, thereby affecting subsequent applications.
In this study, we propose a self-supervised neural network based on frequency domain information guidance(FIGNet). FIGNet introduces the prior of frequency domain by constructing a multi-way detector, making the predicted keypoints more representative. In addition, in the data generation phase, we employ a nonlinear image enhancement strategy to improve the robustness of the network to radiometric variations. Besides, we improve the accuracy of the network by adopting the matching strategy based on patches.
Finally, experimental results on the VIS-SAR dataset demonstrate the effectiveness of our proposed method.

源URL[http://ir.ia.ac.cn/handle/173211/57659]  
专题复杂系统认知与决策实验室
通讯作者Ma L(马雷)
作者单位1.中国科学院自动化研究所
2.中国科学院大学人工智能学院
推荐引用方式
GB/T 7714
Zhou YX,Wan L,Ma L. SELF-SUPERVISED MATCHING NETWORK BASED ON FREQUENCY DOMAIN INFORMATION GUIDANCE FOR REMOTE SENSING IMAGE REGISTRATION[C]. 见:. Athens, Greece. Jul 7, 2024 - Jul 12, 2024.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。