Optimizing Reward Function Weights and Enhancing Control Mechanisms for Bipedal Robots Using LSTM and Attention Mechanisms
文献类型:会议论文
作者 | Cui LZ(崔凌志)1,2![]() |
出版日期 | 2024-03 |
会议日期 | 2023-8-16 |
会议地点 | 河北保定 |
英文摘要 | This paper introduces an optimized control approach for bipedal robots, merging Bayesian optimization for reward function weights and a novel neural network structure combining LSTM and Transformer-based attention. Bayesian optimization enhances training stability and efficiency, while the hybrid network captures temporal patterns and long-range dependencies, outperforming traditional architectures in reward stability and performance. Simulated evaluations show our model's superior robustness against challenges like varying ground friction and external disturbances. Future work will focus on domain randomization and real-world robot fine-tuning to bridge the simulation-reality gap. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/57661] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Wenhao He |
作者单位 | 1.中国科学院大学人工智能学院 2.中国科学院自动化研究所 |
推荐引用方式 GB/T 7714 | Cui LZ,Tianqi Deng,Lihua Ma,et al. Optimizing Reward Function Weights and Enhancing Control Mechanisms for Bipedal Robots Using LSTM and Attention Mechanisms[C]. 见:. 河北保定. 2023-8-16. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。