中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimizing Reward Function Weights and Enhancing Control Mechanisms for Bipedal Robots Using LSTM and Attention Mechanisms

文献类型:会议论文

作者Cui LZ(崔凌志)1,2; Tianqi Deng2; Lihua Ma2; Wenhao He2
出版日期2024-03
会议日期2023-8-16
会议地点河北保定
英文摘要

This paper introduces an optimized control approach for bipedal robots, merging Bayesian optimization for reward function weights and a novel neural network structure combining LSTM and Transformer-based attention. Bayesian optimization enhances training stability and efficiency, while the hybrid network captures temporal patterns and long-range dependencies, outperforming traditional architectures in reward stability and performance. Simulated evaluations show our model's superior robustness against challenges like varying ground friction and external disturbances. Future work will focus on domain randomization and real-world robot fine-tuning to bridge the simulation-reality gap.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/57661]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组
通讯作者Wenhao He
作者单位1.中国科学院大学人工智能学院
2.中国科学院自动化研究所
推荐引用方式
GB/T 7714
Cui LZ,Tianqi Deng,Lihua Ma,et al. Optimizing Reward Function Weights and Enhancing Control Mechanisms for Bipedal Robots Using LSTM and Attention Mechanisms[C]. 见:. 河北保定. 2023-8-16.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。