Gait Learning for 3D Bipedal Robots Based on a Combined Strategy of Hybrid Zero Dynamics Feedback Control and Periodic Reward
文献类型:会议论文
作者 | Cui LZ(崔凌志)1,2![]() |
出版日期 | 2025 |
会议日期 | 2024-5-25 |
会议地点 | 中国湖南长沙 |
英文摘要 | In this study, we introduce an innovative gait learning methodology for three-dimensional bipedal robots, integrating Hybrid Zero Dynamics (HZD) priors with periodic reward functions to enhance gait stability, symmetry, and smooth action transitions. Notably, we employ a data-driven Bezier curve parameterization technique optimized through Reinforcement Learning (RL) to significantly improve learning efficiency and dynamic stability of the gait. The effectiveness of our approach is systematically validated across three key metrics: lateral deviation, training speed, and robustness in challenging environments. The results demonstrate our method's superiority in maintaining path stability, accelerating the learning process, and adapting to complex terrains over traditional gait learning approaches. This research not only advances the efficiency and stability of gait learning for three-dimensional bipedal robots but also provides valuable insights for future studies on robotic gait optimization. |
源URL | [http://ir.ia.ac.cn/handle/173211/57734] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学人工智能学院 |
推荐引用方式 GB/T 7714 | Cui LZ,Tianqi Deng,Lihua Ma,et al. Gait Learning for 3D Bipedal Robots Based on a Combined Strategy of Hybrid Zero Dynamics Feedback Control and Periodic Reward[C]. 见:. 中国湖南长沙. 2024-5-25. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。