中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning

文献类型:期刊论文

作者Li, Zhaojun5,8; Qu, Ning6,7; Zhou, Jingyi3,4,7; Sun, Jingjing6,7; Ren, Qun2; Meng, Jingyi2; Wang, Guangchao8; Wang, Rongyan8; Liu, Jin1,7; Chen, Yijie
刊名NUCLEIC ACIDS RESEARCH
出版日期2024-05-16
页码9
ISSN号0305-1048
DOI10.1093/nar/gkae380
通讯作者Zhang, Sulin(slzhang@simm.ac.cn) ; Zheng, Mingyue(myzheng@simm.ac.cn) ; Li, Xutong(lixutong@simm.ac.cn)
英文摘要Kinase-targeted inhibitors hold promise for new therapeutic options, with multi-target inhibitors offering the potential for broader efficacy while minimizing polypharmacology risks. However, comprehensive experimental profiling of kinome-wide activity is expensive, and existing computational approaches often lack scalability or accuracy for understudied kinases. We introduce KinomeMETA, an artificial intelligence (AI)-powered web platform that significantly expands the predictive range with scalability for predicting the polypharmacological effects of small molecules across the kinome. By leveraging a novel meta-learning algorithm, KinomeMETA efficiently utilizes sparse activity data, enabling rapid generalization to new kinase tasks even with limited information. This significantly expands the repertoire of accurately predictable kinases to 661 wild-type and clinically-relevant mutant kinases, far exceeding existing methods. Additionally, KinomeMETA empowers users to customize models with their proprietary data for specific research needs. Case studies demonstrate its ability to discover new active compounds by quickly adapting to small dataset. Overall, KinomeMETA offers enhanced kinome virtual profiling capabilities and is positioned as a powerful tool for developing new kinase inhibitors and advancing kinase research. The KinomeMETA server is freely accessible without registration at https://kinomemeta.alphama.com.cn/. Graphical Abstract
WOS关键词KINASE INHIBITORS
资助项目National Natural Science Foundation of China[82204278] ; National Natural Science Foundation of China[T2225002] ; National Natural Science Foundation of China[82273855] ; National Key Research and Development Program of China[2022YFC3400504] ; SIMM-SHUTCM Traditional Chinese Medicine Innovation Joint Research Program[E2G805H] ; China Postdoctoral Science Foundation[2022M720153] ; Youth Innovation Promotion Association CAS[2023296] ; Shanghai Municipal Science and Technology Major Project
WOS研究方向Biochemistry & Molecular Biology
语种英语
WOS记录号WOS:001223716000001
出版者OXFORD UNIV PRESS
源URL[http://119.78.100.183/handle/2S10ELR8/311294]  
专题新药研究国家重点实验室
通讯作者Zhang, Sulin; Zheng, Mingyue; Li, Xutong
作者单位1.Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou 310058, Peoples R China
2.Nanjing Univ Chinese Med, Sch Chinese Materia Med, 138 Xianlin Rd, Nanjing 210023, Peoples R China
3.Lingang Lab, Shanghai 200031, Peoples R China
4.Shanghaitech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
5.Suzhou Alphama Biotechnol Co Ltd, Dev Dept, Suzhou 215000, Peoples R China
6.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
7.Chinese Acad Sci, Shanghai Inst Materia Med, State Key Lab Drug Res, Drug Discovery & Design Ctr, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
8.Dezhou Univ, Coll Comp & Informat Engn, Dezhou 253023, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhaojun,Qu, Ning,Zhou, Jingyi,et al. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning[J]. NUCLEIC ACIDS RESEARCH,2024:9.
APA Li, Zhaojun.,Qu, Ning.,Zhou, Jingyi.,Sun, Jingjing.,Ren, Qun.,...&Li, Xutong.(2024).KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning.NUCLEIC ACIDS RESEARCH,9.
MLA Li, Zhaojun,et al."KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning".NUCLEIC ACIDS RESEARCH (2024):9.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。