Pulsar candidate identification using advanced transformer-based models
文献类型:期刊论文
作者 | Cao, Jie2; Xu, Tingting2; Deng, Linhua2; Zhou, Xueliang2; Li, Shangxi2; Liu, Yuxia2; Zhou, Weihong1,2 |
刊名 | CHINESE JOURNAL OF PHYSICS
![]() |
出版日期 | 2024-08 |
卷号 | 90页码:121-133 |
关键词 | Pulsars General Methods Data analysis Techniques Image processing |
ISSN号 | 0577-9073 |
DOI | 10.1016/j.cjph.2024.05.020 |
文献子类 | Article |
英文摘要 | Rapid and accurate identification of pulsars is a significant topic for large radio telescope surveys. With the enhancement of astronomical instruments, modern radio telescopes are witnessing an exponential increase in pulsar candidate detections. The application of artificial intelligence for the identification of pulsar candidates is an automated and highly effective solution to tackle the challenge of processing and recognizing vast volumes of data. In this work, using the data released by two surveys, the Commensal Radio Astronomy FasT Survey (CRAFTS) and High -Time Resolution Universe (HTRU), we propose a new framework to identify pulsar candidates. Firstly, due to the small number of real pulsars, we compare the performance of different data augmentation methods and find that the pulsar samples generated by the Deep Convolutional Generative Adversarial Network (DCGAN) based on deep learning techniques are closer to real pulsars. Secondly, we use two transformer -based classification models, Vision Transformer (ViT) and Convolutional Vision Transformer (CvT), to classify pulsar candidates, and find that the evaluation indexes of pulsar candidate classification based on two transformers can reach 100%. Finally, we use the t -distributed Stochastic Neighbor Embedding (t-SNE) algorithm to visualize the results of our identification framework. The results showed that pulsar and non -pulsar samples are separated from each other in multidimensional space. Therefore, it is a new attempt to apply transformer technology to pulsar candidate classification, and it could be of great significance to subsequent theoretical research. |
学科主题 | 天文学 ; 射电天文学 |
URL标识 | 查看原文 |
出版地 | RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS |
WOS关键词 | CLASSIFICATION ; DISCOVERY |
资助项目 | National Nature Science Foundation of China[61561053]; Yunnan Fundamental Research Projects, China[202301AV070007]; Yunnan Fundamental Research Projects, China[202401AU070026]; Yunnan Revitalization Talent Support Program Innovation Team Project, China[202405AS350012]; Scientific Research Foundation Project of Yunnan Education Department, China[2023J0624]; Scientific Research Foundation Project of Yunnan Education Department, China[2024Y469] |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:001246487300001 |
出版者 | ELSEVIER |
资助机构 | National Nature Science Foundation of China[61561053] ; Yunnan Fundamental Research Projects, China[202301AV070007, 202401AU070026] ; Yunnan Revitalization Talent Support Program Innovation Team Project, China[202405AS350012] ; Scientific Research Foundation Project of Yunnan Education Department, China[2023J0624, 2024Y469] |
版本 | 出版稿 |
源URL | [http://ir.ynao.ac.cn/handle/114a53/27396] ![]() |
专题 | 云南天文台_中国科学院天体结构与演化重点实验室 |
作者单位 | 1.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy China of Sciences, Kunming 650011, China 2.School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China; |
推荐引用方式 GB/T 7714 | Cao, Jie,Xu, Tingting,Deng, Linhua,et al. Pulsar candidate identification using advanced transformer-based models[J]. CHINESE JOURNAL OF PHYSICS,2024,90:121-133. |
APA | Cao, Jie.,Xu, Tingting.,Deng, Linhua.,Zhou, Xueliang.,Li, Shangxi.,...&Zhou, Weihong.(2024).Pulsar candidate identification using advanced transformer-based models.CHINESE JOURNAL OF PHYSICS,90,121-133. |
MLA | Cao, Jie,et al."Pulsar candidate identification using advanced transformer-based models".CHINESE JOURNAL OF PHYSICS 90(2024):121-133. |
入库方式: OAI收割
来源:云南天文台
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。