中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
听觉词汇短语理解中预测编码的动态时空表征脑机制

文献类型:学位论文

作者李君君
答辩日期2024-06
文献子类博士
授予单位中国科学院大学
授予地点中国科学院心理研究所
其他责任者毕鸿燕
关键词发展性阅读障碍 视觉运动整合 一般感知运动缺陷理论 发展 后顶叶皮层
学位名称理学博士
学位专业发展与教育心理学
其他题名The development trajectory and neural mechanism of visualmotor integration deficit in Chinese developmental dyslexia
中文摘要Developmental dyslexia (DD) is characterized by a significantly low reading achievement based on chronological age, despite adequate intelligence and socioeconomic opportunity. The general sensorimotor dysfunction theory proposes that deficits at the perceptual and motor levels may serve as a more fundamental causes of DD. A substantial body of studies have indicated that individuals with DD exhibit deficiencies in visual-motor integration (VMI). Based on different motor timing mechanisms, VMI processing can be divided into two distinct dimensions: continuous and discrete. However, previous investigations into the VMI deficits in DD have predominantly focused on the continuous VMI processing, lacking comparative analyses in the discrete VMI processing. Moreover, prior studies have often been confined to specific age groups and have primarily relied on behavioral measurements, leaving the developmental trajectory and underlying neural mechanisms of VMI deficits in DD unclear. In this study, combining behavioral experiments with functional magnetic resonance imaging (fMRI) technique, we systematically examined the cognitive (Study 1) and neural mechanisms (Study 2) of VMI deficits in Chinese children with DD. Study 1 employed a cross-sectional design, focusing on children with DD and their age-matched controls in the second, fourth, and sixth grades. A figure copying task and a visually guided finger tapping task were utilized to assess children's continuous and discrete VMI abilities, respectively. The main findings were: 1) Children with DD in the second, fourth, and sixth grades exhibited significantly poorer continuous VMI ability compared to control groups, indicating a consistent deficit in continuous VMI processing; 2) Only children with DD in grades two and four showed significantly lower performance in discrete VMI task compared to control groups, while sixth-grade children with DD performed similarly to their controls, suggesting that the lag in discrete VMI ability among Chinese children with DD may be a consequence of developmental delay; 3) The performance of children with DD in continuous and discrete VMI tasks was not correlated, indicating the relative independence of VMI deficits in these two processing dimensions. Study 2 employed fMRI technology to investigate the neural mechanisms underlying continuous and discrete VMI deficits in children with DD. The results revealed that: 1) The neural bases underlying continuous VMI deficit in DD involve hyperactivation in sensory-motor brain regions (such as the left posterior intraparietal sulcus, right precentral gyrus, cingulate motor area, and cuneus), deficient functional connectivity between the left posterior intraparietal sulcus and right precentral gyrus, and abnormalities in the brain functional network centered around the posterior parietal cortex. This brain dysfunction suggested a deficiency in the automation of continuous VMI processing in DD. Additionally, structural abnormalities in gray matter volume were identified in the crucial brain region of the posterior parietal cortex in children with DD, supporting the conclusion drawn from Study 1 that continuous VMI deficit may be inherent in children with DD; 2) The neural bases underlying discrete VMI deficit in DD involve the absence of functional connectivity between the right cerebellum and cuneus, as well as insufficient functional connectivity between the prefrontal cortex and visual and motor areas at the network level. The regulatory role of the prefrontal cortex in controlling visual and motor networks may improve with the development of cognitive control abilities in children with DD, echoing behavioral findings that discrete VMI deficit was a consequence of delayed development. This study systematically revealed, for the first time, distinct developmental patterns and neural mechanisms underlying continuous and discrete VMI abilities in children with DD. It highlights that deficits in continuous VMI may be a significant factor contributing to Chinese DD. The results enriched the general sensorimotor dysfunction theory in DD from the perspective of cross-model integration. Moreover, this study provided new insights into applying VMI in the diagnosis and intervention of DD.
英文摘要发展性阅读障碍是个体阅读发展水平显著落后于其年龄和智力应达到水平 的特殊学习困难。“一般感知运动缺陷”理论提出,感知觉和运动层面的加工缺 陷可能是阅读障碍更为基础的成因。大量研究证据显示,阅读障碍表现出视觉运 动整合缺陷。基于运动计时机制的不同,视觉运动整合加工分为连续型和离散型 两个不同维度。然而,以往对阅读障碍视觉运动整合缺陷的研究大多仅关注了连 续型加工维度,缺乏离散型加工维度的对比分析。更重要的是,以往研究大多局 限于某一特定年龄阶段,且停留在行为测量层面。阅读障碍视觉运动整合缺陷的 发展变化轨迹与内在神经机制尚不清楚。本研究结合行为实验与功能磁共振成像 技术,系统考察了汉语阅读障碍儿童视觉运动整合缺陷的认知(研究一)与神经 机制(研究二)。 研究一采用横断设计,以小学二、四、六年级的阅读障碍儿童及其同年龄对 照组儿童为研究对象,采用图形抄画任务和视觉引导的手指敲击任务,分别测查 了儿童的连续型和离散型视觉运动整合能力。研究结果发现:1)二、四、六年 级阅读障碍儿童的连续型视觉运动整合能力均显著差于同年龄对照组儿童,表现 出持续的连续型视觉运动整合缺陷;2)仅二、四年级阅读障碍儿童的离散型视 觉运动整合能力显著差于同年龄对照组儿童,六年级阅读障碍儿童的表现与对照 组儿童相当,表明汉语阅读障碍儿童离散型视觉运动整合能力的落后可能仅是发 展迟缓的后果;3)各年级阅读障碍儿童的连续型和离散型视觉运动整合行为表 现不相关,提示两种加工维度上的视觉运动整合缺陷具有相对独立性。 研究二采用功能磁共振成像技术,从脑激活、功能连接、脑功能网络和脑结 构多个层次系统探究了阅读障碍儿童连续型和离散型视觉运动整合缺陷的脑机 制。研究结果发现:1)阅读障碍儿童连续型视觉运动整合缺陷的神经机制是左 侧后顶内沟、右侧中央前回、扣带运动区、楔叶等感觉运动脑区的过激活,左侧 后顶内沟与右侧中央前回功能连接的不足,以及以后顶叶皮层为核心的脑功能网 络的异常。这些脑功能异常揭示了阅读障碍儿童连续型视觉运动整合加工自动化 的不足。此外,阅读障碍儿童在后顶叶皮层这一关键脑区上还存在脑结构层面灰 质体积的异常,支持了行为研究推测的连续型视觉运动整合缺陷可能是阅读障碍 儿童固有缺陷的结论;2)阅读障碍儿童离散型视觉运动整合缺陷的神经机制是 右侧小脑和楔叶功能连接的缺失,以及在脑网络层面上,前额叶皮层与视觉区和 运动区之间功能连接的不足。前额叶对视觉和运动网络的调控作用可能随着阅读 障碍儿童认知控制能力的发展而改善,呼应了行为研究发现的离散型视觉运动整 合缺陷是阅读障碍发展迟缓的后果。 本研究首次系统地揭示了阅读障碍儿童连续型和离散型视觉运动整合缺陷 不同的发展模式及神经机制,提示连续型视觉运动整合缺陷可能是导致汉语阅读 障碍的重要因素。研究结果从跨通道整合的角度丰富了阅读障碍的一般感知运动 缺陷理论,并为将视觉运动整合应用于对阅读障碍的诊断和干预提供了新依据。
语种中文
源URL[http://ir.psych.ac.cn/handle/311026/47989]  
专题心理研究所_认知与发展心理学研究室
推荐引用方式
GB/T 7714
李君君. 听觉词汇短语理解中预测编码的动态时空表征脑机制[D]. 中国科学院心理研究所. 中国科学院大学. 2024.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。