Piezo1 调控海马机械微环境 改善大鼠 PTSD 样行为学的机制研究
文献类型:学位论文
作者 | 王思琪 |
答辩日期 | 2026-06 |
文献子类 | 博士 |
授予单位 | 中国科学院大学 |
授予地点 | 中国科学院心理研究所 |
其他责任者 | 郭建友 |
关键词 | 创伤后应激障碍 机械门控阳离子通道 1 机械微环境 突触可塑性 情绪和记忆 |
学位名称 | 理学博士 |
学位专业 | 健康心理学 |
其他题名 | Mechanisms of Piezo1 modulating the hippocampal mechanical microenvironment and improving PTSD-like behaviors in rats |
中文摘要 | OBJECTIVE: With the turbulent international situation and frequent occurrence of natural disasters in recent years, post-traumatic stress disorder (PTSD) has gradually become one of the most important mental illnesses threatening human health. The limited options of pharmacotherapy for PTSD does not fully satisfy the needs of patients, and with a long period of time and poor efficacy, which has made it urgent to deeply investigate the pathogenesis of PTSD and find new therapeutic targets. Abnormal synaptic function is a new hypothesis for PTSD in recent years. The abnormal fear memory of trauma, persistent avoidance anxiety, negative alterations in mood, and hypervigilance for threat in PTSD patients also suggest abnormal synaptic links and neurological dysfunction in the brain. The regulation of synaptic plasticity is not only regulated by chemical signals, but also by mechanical signals with the gradual discovery of mechanical response components. Piezo-type mechanosensitive ion channel component 1 (Piezo1) is a newly discovered mechanosensitive cation channel, which is involved in the homeostatic regulation of cellular mechanical microenvironment, and has a unique role in the regulation of emotional and cognitive functions in the nervous system. Therefore, we aimed to investigate interfering with Piezo1 could regulate mechanical microenvironmental homeostasis and synaptic plasticity, and effect PTSD-like behaviors in rats. METHODS: Single prolonged stress paradigm combined with foot-shocking (SPS&S) induced PTSD model and normal rats injected with AAV-shPiezo1 were used to explore the physiopathological mechanisms of Piezo1 involved in modulating PTSD-like emotion and memory behaviors. First, the behaviors and peripheral inflammatory factor levels of SPS&S model rats were used to assess the PTSD model. RT-qPCR and Western blot were used to detect whether Piezo1 levels in hippocampus and mPFC were altered after acute stress, and identify the brain regions that produced changes. Second, injection of adeno-associated virus (AAV) knocked down Piezo1 levels in hippocampal regions. And treatment with Yoda1 up-regulated of Piezo1 level in hippocampal regions in SPS&S model rats. Combined with their behaviors, it was determined that modulation of Piezo1 in the hippocampal regions does indeed have an effect on the PTSD-like behaviors of rats. Subsequently, the hippocampal tissues were subjected to transcriptomics, enriched for differential genes, and analyzed the biological processes and neural pathways that may be affected by Piezo1. Finally, the immunofluorescence staining, Golgi-cox staining and molecular biology assays were used to analyze mechanical microenvironmental homeostasis and neuronal synaptic development, so as to explore the mechanism of Piezo1's anti-PTSD-like action. RESULTS: (1) SPS&S stress induced rats significant PTSD-like behaviors in elevated sugar-water preference, increased immobility time, decreased time in central area and open arm, and elevated level of freezing. Piezo1 expression in hippocampus that involved in the regulation of emotion and memory was decreased. (2) Rats with AAV-shPiezo1 also showed anhedonia, behavioral despair, elevated persistent anxiety behaviors, and abnormal contextual and cued fear memory. At the same time, peripheral inflammation level was obviously elevated. In contrast, Piezo1 expression in the hippocampus of SPS&S-induced rats treatment with Yoda1 was increased, the PTSD-like behaviors were significantly improved, and the peripheral inflammation level was also significantly reduced. (3) Transcriptomics analysis of hippocampal tissue samples revealed that altered Piezo1 level was closely associated with cellular dynamics, and highly enriched the pathways in focal adhesion, extracellular matrix-associated, PI3K-AKT, and axon guidance. (4) Under pathological conditions of PTSD, promoting Piezo1 level reduced the number of microglia in the hippocampus, improved morphology, alleviated neuroinflammation and mechanical microenvironmental homeostasis. Through analysising gene transcription levels of extracellular matrix (ECM), matrix metalloproteinase (MMPs), chondroitin sulfate proteoglycan (CSPG) and Hippo pathways, it was found that increasing the level of Piezo1 positively regulated mechanical microenvironmental homeostasis. This alteration promoted synaptogenesis in hippocampus, with a significant increase in mature dendritic spines and dendritic spine density, and normalize neuronal structure to function. CONCLUSION: SPS&S stress can successfully construct PTSD model rats, with good behavioral characterization and molecular biological changes. It was found that SPS&S stress would lead to the decrease of Piezo1 level in the hippocampus, and knockdown the Piezo1 level in the hippocampus of SD rats would also induce the PTSD-like abnormalities in emotions and fear memories. While increasing Piezo1 level could effectively alleviate the PTSD-like behaviors in SPS&S rats. The results revealed that Piezo1 in the hippocampus is involved in positively regulating mechanical microenvironmental homeostasis under pathological conditions, promoting synaptic plasticity and improving PTSD-like emotion and fear memory abnormalities. The study confirmed the importance of synaptic plasticity and neuronal functional connectivity in the pathogenesis and treatment of PTSD, enriched the physiopathological study of Piezo1, and seeked a new high-potential target for the treatment of PTSD. |
英文摘要 | 目的:随着近些年国际局势动荡、自然灾害频发,创伤后应激障碍(Post-traumatic stress disorder, PTSD)已经逐渐成为威胁人类健康的重要精神疾病之一。目前 PTSD 的治疗药物选择有限,并不能完全满足患者的治疗需求,服 药周期长、药物效能差,使得深入探究 PTSD 发病机制,寻找新的 PTSD 治疗靶 点迫在眉睫。突触功能连接异常是近些年来有关 PTSD 发病机制提出的新假说, PTSD 患者表现出的对创伤的恐惧记忆异常、持续性回避焦虑、心境负向改变和 异常警觉性提高等均提示了脑内突触可塑性异常,神经功能失调。突触可塑性调控不单单受到化学信号调节,随着有关机械响应元件的逐渐发现,机械信号也被证实参与引导和调控着神经元的突触发生。机械门控阳离子通道 1(Piezo-type mechanosensitive ion channel component 1, Piezo1)是 2010 年新发现的机械阳离子通道蛋白,参与细胞机械微环境稳态调节,在调控神经系统情绪和认知功能中具有独特作用。因此本研究旨在围绕 Piezo1 靶点,分析调控 Piezo1 通道对大鼠PTSD 样行为的影响,探讨其在机械微环境稳态和突触可塑性中的作用。 方法:采用单次延长应激范式结合足底电击(Single prolonged stress and foot-shocking, SPS&S ) 诱 导 构 建 的 PTSD 模 型 大 鼠 和 腺 相 关 病 毒 (Adeno-associated virus, AAV)敲低 Piezo1 基因表达的正常 SD 大鼠,探讨 Piezo1 参与调控 PTSD 样行为的生理病理学机制。首先,分析 SPS&S 模型大鼠行为学 和外周炎症因子水平,评估大鼠模型构建;并采用 RT-qPCR 和蛋白免疫印记方 法检测急性应激后是否会导致脑内海马和内侧前额叶皮层 Piezo1 水平发生改变, 确定产生变化的脑区。其次,注射腺相关病毒敲低海马脑区Piezo1水平,和SPS&S 模型大鼠给予 Piezo1 激动剂 Yoda1 处理上调海马脑区 Piezo1 水平,结合行为学,明确调控海马脑区 Piezo1 对大鼠 PTSD 样行为的改变。随后,对上述动物的海 马组织进行转录组学检测,富集差异基因,分析调控 Piezo1 可能影响的生物过 程和神经通路。最后,采用免疫荧光染色、Golgi-cox 染色和分子生物学方法,检测调控 Piezo1 改变的机械微环境,分析神经元突触发生情况,阐明 Piezo1 的 抗 PTSD 样神经机制。 结果:1)SPS&S 诱导大鼠糖水偏好率升高,强迫游泳不动时间增长,中心区域和开放臂停留时间减少,恐惧测试木僵水平升高,表现出明显 PTSD 样行为,且涉及情绪和记忆调控的海马脑区内 Piezo1 表达下降。 2)海马脑区 Piezo1 水平敲低的大鼠也表现出较为明显快感缺失、行为绝望心境负向改变,持续焦虑症状和场景、条件恐惧记忆异常,同时外周炎症水平明显升高。而 SPS&S 模型动物给予 Piezo1 激动剂 Yoda1 处理后,脑内 Piezo1 表达上升,上述 PTSD 样行为得到明显改善,外周炎症水平也显著降低。 3)转录组学对大鼠海马组织样本分析发现,Piezo1 水平的改变同细胞动力 学相关的生物过程密切相关,存在焦点粘附通路、胞外基质相关通路、PI3K-AKT 信号通路和轴突引导的高度富集。 4)PTSD 病理条件下促进 Piezo1 水平提高可以减少海马脑区小胶质细胞数目,改善形态,缓解脑内神经炎症,改善机械微环境稳态;同时分析胞外基质 (Extracellular matrix, ECM)、基质金属蛋白酶(Matrix metalloproteinase, MMPs)、 硫酸软骨素蛋白聚糖(Chondroitin sulfate proteoglycan, CSPG)和 Hippo 通路等 多种涉及机械微环境稳态基因的转录水平,发现提高 Piezo1 水平,可以正向调 控机械微环境稳态。这一改变促进海马神经元的突触发生,成熟树突棘明显增多,树突棘密度增加,神经元结构归于功能正常化。 结论:SPS&S 应激可以成功构建大鼠 PTSD 模型,具有良好的行为学表征和分子生物学改变。研究发现 SPS&S 应激会导致海马脑区 Piezo1 水平降低,敲 低 SD 大鼠海马脑区 Piezo1 水平也会诱导动物产生 PTSD 样的情绪和恐惧记忆异 常,提高 Piezo1 水平则可以有效缓解 SPS&S 模型大鼠 PTSD 样症状。研究结果 揭示了海马脑区 Piezo1 参与正向调控病理状态下神经元存活的机械微环境稳态,促进突触可塑性,改善 PTSD 样情绪和恐惧记忆功能异常。研究证实了突触可塑 性和神经元功能连接在 PTSD 发病和治疗中的重要意义,丰富了 Piezo1 的生理 病理学研究,为 PTSD 的治疗寻求了新的潜力靶点。 |
语种 | 中文 |
源URL | [http://ir.psych.ac.cn/handle/311026/48002] ![]() |
专题 | 心理研究所_健康与遗传心理学研究室 |
推荐引用方式 GB/T 7714 | 王思琪. Piezo1 调控海马机械微环境 改善大鼠 PTSD 样行为学的机制研究[D]. 中国科学院心理研究所. 中国科学院大学. 2026. |
入库方式: OAI收割
来源:心理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。