Adaptive Multiphase Liver Tumor Segmentation With Multiscale Supervision
文献类型:期刊论文
作者 | Kuang, Haopeng1; Yang, Xue2; Li, Hongjun3; Wei, Jingwei4![]() |
刊名 | IEEE SIGNAL PROCESSING LETTERS
![]() |
出版日期 | 2024 |
卷号 | 31页码:426-430 |
关键词 | Tumors Feature extraction Liver Image segmentation Computed tomography Annotations Hospitals Liver tumor segmentation multi-phase computed tomography multi-scale supervision |
ISSN号 | 1070-9908 |
DOI | 10.1109/LSP.2024.3356414 |
通讯作者 | Wei, Jingwei(weijingwei2014@ia.ac.cn) ; Zhang, Lihua(lihuazhang@fudan.edu.cn) |
英文摘要 | The segmentation of liver tumors using multi-phase computed tomography (CT) images has garnered considerable attention in medical signal processing. However, existing multi-phase liver tumor segmentation methods primarily concentrate on feature integration across various phases, neglecting a comprehensive exploration of synergistic relationships among these phases and constraints on features across different scales. This limitation has led to performance bottlenecks in existing approaches. This article proposes a robust multi-phase liver tumor segmentation framework designed to address the aforementioned challenges. Specifically, we introduce a novel multi-phase and channel-stacked dual attention module, seamlessly integrated within a multi-scale architecture. This module adaptively captures essential semantic information among different phases, enhancing the segmentation network's feature extraction capabilities. A scale-weighted loss function for multi-scale supervision is also designed to mitigate false positives in the segmentation results. To facilitate a systematic evaluation of our model's performance on multi-phase data, we curate a new dataset comprising samples from four distinct phases. Our proposed framework is rigorously assessed through comprehensive quantitative and qualitative experiments, highlighting its compelling performance. |
资助项目 | National Natural Science Foundation of China |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:001166718500004 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/57777] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Wei, Jingwei; Zhang, Lihua |
作者单位 | 1.Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China 2.Zhengzhou Univ, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China 3.Capital Med Univ, Beijing Youan Hosp, Beijing 100069, Peoples R China 4.Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Kuang, Haopeng,Yang, Xue,Li, Hongjun,et al. Adaptive Multiphase Liver Tumor Segmentation With Multiscale Supervision[J]. IEEE SIGNAL PROCESSING LETTERS,2024,31:426-430. |
APA | Kuang, Haopeng,Yang, Xue,Li, Hongjun,Wei, Jingwei,&Zhang, Lihua.(2024).Adaptive Multiphase Liver Tumor Segmentation With Multiscale Supervision.IEEE SIGNAL PROCESSING LETTERS,31,426-430. |
MLA | Kuang, Haopeng,et al."Adaptive Multiphase Liver Tumor Segmentation With Multiscale Supervision".IEEE SIGNAL PROCESSING LETTERS 31(2024):426-430. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。