Artificial intelligence in liver imaging: methods and applications
文献类型:期刊论文
作者 | Zhang, Peng1; Gao, Chaofei1; Huang, Yifei3; Chen, Xiangyi1; Pan, Zhuoshi1; Wang, Lan1; Dong, Di4![]() |
刊名 | HEPATOLOGY INTERNATIONAL
![]() |
出版日期 | 2024-02-20 |
页码 | 13 |
关键词 | Artificial intelligence Liver disease Medical imaging Deep learning Multimodal data |
ISSN号 | 1936-0533 |
DOI | 10.1007/s12072-023-10630-w |
通讯作者 | Li, Shao(shaoli@mail.tsinghua.edu.cn) ; Qi, Xiaolong(qixiaolong@vip.163.com) |
英文摘要 | Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care. |
WOS关键词 | NEURAL-NETWORK ; HEPATOCELLULAR-CARCINOMA ; DIGITAL MEDICINE ; CANCER ; DIAGNOSIS ; SEGMENTATION ; IMAGES |
资助项目 | National Natural Science Foundation of China[T2341008] ; National Natural Science Foundation of China[81225025] ; National Natural Science Foundation of China[82305047] ; Tsinghua-Toyota Joint Research Fund ; Anhui Province Traditional Chinese Medicine Science and Technology Research Project[202303a07020001] |
WOS研究方向 | Gastroenterology & Hepatology |
语种 | 英语 |
WOS记录号 | WOS:001171439400003 |
出版者 | SPRINGER |
资助机构 | National Natural Science Foundation of China ; Tsinghua-Toyota Joint Research Fund ; Anhui Province Traditional Chinese Medicine Science and Technology Research Project |
源URL | [http://ir.ia.ac.cn/handle/173211/57959] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Li, Shao; Qi, Xiaolong |
作者单位 | 1.Tsinghua Univ, Inst TCM X, Dept Automat, MOE Key Lab Bioinformat,Bioinformat Div,BNRIST, Beijing, Peoples R China 2.Southeast Univ, Zhongda Hosp, Ctr Portal Hypertens,Dept Radiol, Nurturing Ctr Jiangsu Prov State Lab AI Imaging &, Nanjing, Peoples R China 3.Sun Yat Sen Univ, Affiliated Hosp 3, Dept Gastroenterol, Guangzhou, Peoples R China 4.Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Peng,Gao, Chaofei,Huang, Yifei,et al. Artificial intelligence in liver imaging: methods and applications[J]. HEPATOLOGY INTERNATIONAL,2024:13. |
APA | Zhang, Peng.,Gao, Chaofei.,Huang, Yifei.,Chen, Xiangyi.,Pan, Zhuoshi.,...&Qi, Xiaolong.(2024).Artificial intelligence in liver imaging: methods and applications.HEPATOLOGY INTERNATIONAL,13. |
MLA | Zhang, Peng,et al."Artificial intelligence in liver imaging: methods and applications".HEPATOLOGY INTERNATIONAL (2024):13. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。