中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fuzzy Inference Attention Module for Unsupervised Domain Adaptation

文献类型:期刊论文

作者Wang, Zhengshan1; Chen, Long1; Wang, Fei-Yue2,3,4
刊名IEEE TRANSACTIONS ON FUZZY SYSTEMS
出版日期2024-04-01
卷号32期号:4页码:1706-1718
关键词Attention module domain adaptation (DA) fuzzy inference system (FIS) negative transfer (NL)
ISSN号1063-6706
DOI10.1109/TFUZZ.2023.3332751
通讯作者Chen, Long(longchen@umac.mo)
英文摘要Unsupervised domain adaptation (UDA) aims to transfer knowledge acquired from the labeled source domain to the unlabeled target domain. However, the quality of samples can vary greatly. While partial samples are dominated by high-quality domain-invariant class-related information, others may only contain irrelevant domain-specific information or useless random noise. Treating all samples equally may lead to negative transfer, significantly impairing the performance. To address the issue of varying sample quality, we propose an attention module to emphasize the samples that are most suitable for transfer. Within the attention module, we have designed a fuzzy inference system to assess the quality of data based on its class and domain information. Such a fuzzy inference attention (FIA) module demonstrates strong interpretability due to its consideration of the fuzzy nature inherent in class and domain information within the data. FIA also has high flexibility and extensibility as the rule base can be easily adjusted by expert knowledge. More importantly, FIA does not use any parameters requiring training and has a low overhead. This makes it fast and applicable to most existing UDA methods. The experiments on several benchmark datasets prove that FIA can bring significant improvement to existing methods.
资助项目Science and Technology Development Fund, Macao S.A.R
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:001196731700067
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构Science and Technology Development Fund, Macao S.A.R
源URL[http://ir.ia.ac.cn/handle/173211/58086]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Chen, Long
作者单位1.Univ Macau, Fac Sci & Technol, Dept Comp & Informat Sci, Macau 999078, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
3.Qingdao Acad Intelligent Ind, Parallel Blockchain Technol Innovat Ctr, Qingdao 266109, Peoples R China
4.Natl Univ Def Technol, Res Ctr Mil Computat Expt & Parallel Syst, Changsha 410073, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhengshan,Chen, Long,Wang, Fei-Yue. Fuzzy Inference Attention Module for Unsupervised Domain Adaptation[J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS,2024,32(4):1706-1718.
APA Wang, Zhengshan,Chen, Long,&Wang, Fei-Yue.(2024).Fuzzy Inference Attention Module for Unsupervised Domain Adaptation.IEEE TRANSACTIONS ON FUZZY SYSTEMS,32(4),1706-1718.
MLA Wang, Zhengshan,et al."Fuzzy Inference Attention Module for Unsupervised Domain Adaptation".IEEE TRANSACTIONS ON FUZZY SYSTEMS 32.4(2024):1706-1718.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。