ChatGPT-Based Scenario Engineer: A New Framework on Scenario Generation for Trajectory Prediction
文献类型:期刊论文
作者 | Li, Xuan1; Liu, Enlu2; Shen, Tianyu3![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
![]() |
出版日期 | 2024-03-01 |
卷号 | 9期号:3页码:4422-4431 |
关键词 | Parallel driving scenarios engineering foundation model vehicle operating system generative pre-trained transformer trajectory prediction |
ISSN号 | 2379-8858 |
DOI | 10.1109/TIV.2024.3363232 |
通讯作者 | Shen, Tianyu(tianyu.shen@buct.edu.cn) ; Wang, Fei-Yue(feiyue@ieee.org) |
英文摘要 | The latest developments in parallel driving foreshadow the possibility of delivering intelligence across organizations using foundation models. As is well-known, there are limitations in scenario acquisition in the field of intelligent vehicles (IV), such as efficiency, diversity, and complexity, which hinder in-depth research of vehicle intelligence. To address this issue, this manuscript draws inspiration from scenarios engineering, parallel driving and introduces a pioneering framework for scenario generation, leveraging the ChatGPT, denoted as SeGPT. Within this framework, we define a trajectory scenario and design prompts engineering to generate complex and challenging scenarios. Furthermore, SeGPT, in combination with "Three Modes", foundation models, vehicle operating system, and other advanced infrastructure, holds the potential to achieve higher levels of autonomous driving. Experimental outcomes substantiate SeGPT's adeptness in producing a spectrum of varied scenarios, underscoring its potential to augment the development of trajectory prediction algorithms. These findings mark significant progress in the domain of scenario generation, also pointing towards new directions in the research of vehicle intelligence and scenarios engineering. |
WOS关键词 | INTELLIGENT ; VISION ; SYSTEM |
资助项目 | National Natural Science Foundation of China |
WOS研究方向 | Computer Science ; Engineering ; Transportation |
语种 | 英语 |
WOS记录号 | WOS:001214544700027 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/58379] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队 |
通讯作者 | Shen, Tianyu; Wang, Fei-Yue |
作者单位 | 1.Peng Cheng Lab, Shenzhen 518000, Peoples R China 2.Changsha Univ Sci & Technol, Sch Elect & Informat Engn, Changsha 410001, Peoples R China 3.Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China 4.Macau Univ Sci & Technol, Macau 999078, Peoples R China 5.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Xuan,Liu, Enlu,Shen, Tianyu,et al. ChatGPT-Based Scenario Engineer: A New Framework on Scenario Generation for Trajectory Prediction[J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,2024,9(3):4422-4431. |
APA | Li, Xuan,Liu, Enlu,Shen, Tianyu,Huang, Jun,&Wang, Fei-Yue.(2024).ChatGPT-Based Scenario Engineer: A New Framework on Scenario Generation for Trajectory Prediction.IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,9(3),4422-4431. |
MLA | Li, Xuan,et al."ChatGPT-Based Scenario Engineer: A New Framework on Scenario Generation for Trajectory Prediction".IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 9.3(2024):4422-4431. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。