Prototypical Context-Aware Dynamics for Generalization in Visual Control With Model-Based Reinforcement Learning
文献类型:期刊论文
作者 | Wang, Junjie1,2![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
![]() |
出版日期 | 2024-05-15 |
页码 | 11 |
关键词 | Context-aware dynamics generalization model-based reinforcement learning visual control |
ISSN号 | 1551-3203 |
DOI | 10.1109/TII.2024.3396525 |
通讯作者 | Zhang, Qichao(zhangqichao2014@ia.ac.cn) |
英文摘要 | The latent world model, which efficiently represents high-dimensional observations within a latent space, has shown promise in reinforcement learning-based policies for visual control tasks. Due to a lack of clear environmental context comprehension, its applicability in a variety of contexts with unknown dynamics is constrained. We propose a prototypical context- aware dynamics (ProtoCAD) model to address this issue. This model captures local dynamics using temporally consistent latent contexts and aids generalization in visual control tasks. By grouping prototypes over historical experiences, ProtoCAD collects useful contextual information that improves model-based reinforcement learning dynamics generalization in two ways. First, to guarantee the consistency of prototype assignments for various temporal segments of the same latent trajectory, a temporally consistent prototypes regularizer is used. Then, a context representation is devised to combine the aggregated prototype with the projection embedding of latent states. According to extensive trials, ProtoCAD outperforms competing approaches in terms of dynamics generalization for visual robotic control and autonomous driving applications. |
资助项目 | National Key Research and Development Program of China |
WOS研究方向 | Automation & Control Systems ; Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:001226155200001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/58455] ![]() |
专题 | 复杂系统管理与控制国家重点实验室_深度强化学习 |
通讯作者 | Zhang, Qichao |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Key Lab Multimodal Artificial Intelligence Syst, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Univ Hong Kong, Hong Kong 100085, Peoples R China 4.Huawei Technol, Noahs Ark Lab, Beijing 100085, Peoples R China 5.Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Junjie,Zhang, Qichao,Mu, Yao,et al. Prototypical Context-Aware Dynamics for Generalization in Visual Control With Model-Based Reinforcement Learning[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024:11. |
APA | Wang, Junjie.,Zhang, Qichao.,Mu, Yao.,Li, Dong.,Zhao, Dongbin.,...&Hao, Jianye.(2024).Prototypical Context-Aware Dynamics for Generalization in Visual Control With Model-Based Reinforcement Learning.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,11. |
MLA | Wang, Junjie,et al."Prototypical Context-Aware Dynamics for Generalization in Visual Control With Model-Based Reinforcement Learning".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2024):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。