中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ontology based autonomous robot task processing framework

文献类型:期刊论文

作者Ge, Yueguang1,2; Zhang, Shaolin1; Cai, Yinghao1; Lu, Tao1; Wang, Haitao1,2; Hui, Xiaolong1; Wang, Shuo1,3
刊名FRONTIERS IN NEUROROBOTICS
出版日期2024-05-07
卷号18页码:16
关键词service robot knowledge-enabled robot ontology knowledge representation task planning
ISSN号1662-5218
DOI10.3389/fnbot.2024.1401075
通讯作者Cai, Yinghao(yinghao.cai@ia.ac.cn) ; Wang, Shuo(shuo.wang@ia.ac.cn)
英文摘要Introduction In recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments.Methods In this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments.Results Experimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework.Discussion In future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.
WOS关键词KNOWLEDGE MANAGEMENT ; SERVICE ; KNOWROB
资助项目National Natural Science Foundation of China[U23B2038] ; National Natural Science Foundation of China[62273342]
WOS研究方向Computer Science ; Robotics ; Neurosciences & Neurology
语种英语
WOS记录号WOS:001227545200001
出版者FRONTIERS MEDIA SA
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/58421]  
专题智能机器人系统研究
通讯作者Cai, Yinghao; Wang, Shuo
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Ge, Yueguang,Zhang, Shaolin,Cai, Yinghao,et al. Ontology based autonomous robot task processing framework[J]. FRONTIERS IN NEUROROBOTICS,2024,18:16.
APA Ge, Yueguang.,Zhang, Shaolin.,Cai, Yinghao.,Lu, Tao.,Wang, Haitao.,...&Wang, Shuo.(2024).Ontology based autonomous robot task processing framework.FRONTIERS IN NEUROROBOTICS,18,16.
MLA Ge, Yueguang,et al."Ontology based autonomous robot task processing framework".FRONTIERS IN NEUROROBOTICS 18(2024):16.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。