Energy-Social Manufacturing for Social Computing
文献类型:期刊论文
作者 | Zhao, Alexis Pengfei2; Li, Shuangqi1; Wang, Yanjia3; Hu, Paul Jen-Hwa4; Wu, Chenye5,6; Cao, Zhidong2![]() |
刊名 | IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
![]() |
出版日期 | 2024-04-08 |
页码 | 14 |
关键词 | Blockchain security cyber-physical-social systems (CPSSs) energy management peer-to-peer trading social manufacturing (SM) |
ISSN号 | 2329-924X |
DOI | 10.1109/TCSS.2024.3379254 |
通讯作者 | Cao, Zhidong(Zhidong.Cao@ia.ac.cn) |
英文摘要 | This article explores social manufacturing (SM) within cyber-physical-social systems (CPSSs), leveraging artificial intelligence (AI) to revolutionize energy prosumer networks. We introduce a blockchain-enabled operation and management mechanism for energy systems, incorporating energy aggregators for efficient transaction audits and employing consortium blockchain and proof-of-work for enhanced security. Guided by social governance principles and utilizing the soft actor-critic (SAC) approach for handling renewable generation and load demand uncertainties, our method offers a resilient and cost-effective solution. Simulated case studies reveal a 16.7% reduction in audit costs and a 2.4% increase in peer-to-peer transactions, highlighting improved network synergy. Our approach also reduces redundant trading by 6.5%and cuts operational costs by up to 6%, demonstrating the effectiveness of blockchain in improving cost-efficiency and enhancing social governance and security in energy manufacturing systems. The findings of this study contribute a novel vista to the ongoing discourse in SM, illustrating the formidable potential of advanced information and AI technologies in amplifying the operational acumen of contemporary manufacturing ecosystems. |
WOS关键词 | OPERATION ; OPTIMIZATION ; SYSTEM ; DESIGN |
资助项目 | New Generation Artificial Intelligence Development Plan of China[2021ZD0111205] ; National Natural Science Foundation of China[72025404] ; National Natural Science Foundation of China[72293575] ; National Natural Science Foundation of China[72074209] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001201894600001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | New Generation Artificial Intelligence Development Plan of China ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/58281] ![]() |
专题 | 舆论大数据科学与技术应用联合实验室 |
通讯作者 | Cao, Zhidong |
作者单位 | 1.Cornell Univ, Syst Engn, Ithaca, NY 14853 USA 2.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 3.Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China 4.Univ Utah, David Eccles Sch Business, Salt Lake City, UT 84112 USA 5.Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China 6.Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518129, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 | Zhao, Alexis Pengfei,Li, Shuangqi,Wang, Yanjia,et al. Energy-Social Manufacturing for Social Computing[J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,2024:14. |
APA | Zhao, Alexis Pengfei.,Li, Shuangqi.,Wang, Yanjia.,Hu, Paul Jen-Hwa.,Wu, Chenye.,...&Fei, Faith Xue.(2024).Energy-Social Manufacturing for Social Computing.IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,14. |
MLA | Zhao, Alexis Pengfei,et al."Energy-Social Manufacturing for Social Computing".IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS (2024):14. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。