中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Coordinating explicit and implicit knowledge for knowledge-based VQA

文献类型:期刊论文

作者Wang, Qunbo1; Liu, Jing1; Wu, Wenjun2
刊名PATTERN RECOGNITION
出版日期2024-07-01
卷号151页码:9
关键词Knowledge retrieval Pre -trained model Knowledge -based VQA
ISSN号0031-3203
DOI10.1016/j.patcog.2024.110368
通讯作者Liu, Jing(jliu@nlpr.ia.ac.cn)
英文摘要Pre -trained models often generate plausible looking statements that are factually incorrect because of the inaccurate implicit knowledge contained in the model's parameters. Related methods retrieve explicit knowledge from the external knowledge source to help improve the prediction performance and reliability. However, these methods often use weak training signals for the retriever, and require the model to make each prediction based on the retrieved knowledge, even when the retrieved knowledge is not reliable or the model can produce better prediction only using its implicit knowledge. Therefore, it is necessary to enable the pre -trained model to actively select more beneficial knowledge for producing better prediction. This work proposes a novel method to help the model to Coordinate Explicit and Implicit Knowledge (CEIK) for the knowledge -based visual question answering (VQA) task, which is an important direction of pre -trained models. Furthermore, a better training signal is proposed for the retriever according to whether the retrieved knowledge can correct the prediction. Experimental results demonstrate the effectiveness of our method.
资助项目National Key R&D Program of China[2022ZD0118802] ; National Natural Science Foundation of China[62206279]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:001195942400001
出版者ELSEVIER SCI LTD
资助机构National Key R&D Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/58044]  
专题自动化研究所_模式识别国家重点实验室_图像与视频分析团队
通讯作者Liu, Jing
作者单位1.Chinese Acad Sci, Inst Automat, Beijing 100191, Peoples R China
2.Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qunbo,Liu, Jing,Wu, Wenjun. Coordinating explicit and implicit knowledge for knowledge-based VQA[J]. PATTERN RECOGNITION,2024,151:9.
APA Wang, Qunbo,Liu, Jing,&Wu, Wenjun.(2024).Coordinating explicit and implicit knowledge for knowledge-based VQA.PATTERN RECOGNITION,151,9.
MLA Wang, Qunbo,et al."Coordinating explicit and implicit knowledge for knowledge-based VQA".PATTERN RECOGNITION 151(2024):9.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。