中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image Processing Algorithm Design for Low-Light EBCMOS Devices Based on FPGA

文献类型:会议论文

作者Cao, Yi2; Wei, Na2; Zhu, Xiangping2; Ma, Jun1
出版日期2023
会议日期2023-12-22
会议地点Hybrid, Wuhan, China
关键词Field-Programmable Gate Array (FPGA) Algorithm Architecture Image Processing Hardware Acceleration Hardware Description Language EBCMOS
DOI10.1109/EIECC60864.2023.10456650
页码592-597
英文摘要

In this study, a hardware platform based on the Xilinx 7-series Field-Programmable Gate Array (FPGA) is employed. The design of a Static Storage Control Module and a Median Filtering Module is accomplished through programming in the Verilog hardware description language using Vivado software. The functionality of these modules is rigorously verified through logical validation using Modelsim software. The algorithm is applied to process low-light images captured by a custom EBCMOS image sensor. Comparative analysis with software testing platforms reveals a substantial improvement in image processing speed when utilizing the FPGA-based hardware resources. This improvement allows the processing of 1 pixel per clock cycle. As a result, this work lays the foundation for the design of lightweight, integrated data acquisition systems for the nextgeneration night vision helmet systems. © 2023 IEEE.

产权排序1
会议录2023 3rd International Conference on Electronic Information Engineering and Computer Communication, EIECC 2023
会议录出版者Institute of Electrical and Electronics Engineers Inc.
语种英语
ISBN号9798350359961
源URL[http://ir.opt.ac.cn/handle/181661/97384]  
专题西安光学精密机械研究所_瞬态光学技术国家重点实验室
通讯作者Zhu, Xiangping
作者单位1.Xi'An Institute of Atomic Precision Manufacturing Technology Co., Ltd., Xi'an, China
2.Institute of Optics and Precision Mechanics, University of Chinese Academy of Sciences, State Key Laboratory of Transient Optics and Photonics, Xi'an, China;
推荐引用方式
GB/T 7714
Cao, Yi,Wei, Na,Zhu, Xiangping,et al. Image Processing Algorithm Design for Low-Light EBCMOS Devices Based on FPGA[C]. 见:. Hybrid, Wuhan, China. 2023-12-22.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。