A new method for mapping vegetation structure parameters in forested areas using GEDI data
文献类型:期刊论文
作者 | Wang, Ziwei1,2; Cai, Hongyan1,2; Yang, Xiaohuan1,2 |
刊名 | ECOLOGICAL INDICATORS
![]() |
出版日期 | 2024-07-01 |
卷号 | 164页码:112157 |
关键词 | Forest Vegetation structure Decomposition Layered vegetation SOFM GEDI |
DOI | 10.1016/j.ecolind.2024.112157 |
产权排序 | 1 |
文献子类 | Article |
英文摘要 | The spatially continuous mapping of vegetation structure parameters in forested areas serves as a crucial foundation for research in various fields, including ecosystem ecology, climate change, hydrology, and forest management and protection. However, there is a notable scarcity of regional scale data regarding vegetation structure parameters. Therefore, our objective was to fill this data gap by providing a methodology for mapping vegetation structure parameters in forested areas at regional-scale. Global Ecosystem Dynamics Investigation (GEDI) provides precise observational data on vegetation structure parameters across the world. Using GEDI vegetation structure parameter point data, we developed a vegetation state coefficient based on the ratio of plant area index (PAI) and vegetation coverage (COVER). Subsequently, we proposed a method for decomposing vegetation coverage to simulate layered vegetation coverage. Taking Jiangxi Province as a case study, we integrated machine learning models to generate a spatially continuous map of vegetation structure parameters in forested areas, including layered coverage and layered leaf area index, in 2020. The map has a spatial resolution of 30 m and a vertical resolution of 5 m. The model exhibits excellent performance. Among the 140 sets of models, approximately 63 % of them achieved an R2 surpassing 0.6, while 89 % of the models achieved a root mean square error (RMSE) below 0.3. This study can serve as a valuable reference for the decomposition of vegetation structure parameters at the regional scale and provide a more precise depiction of the spatial characteristics of vertical vegetation structure at the regional scale. It contributes by providing data support and methodological guidance for research related to forest structure analysis, resource management, and ecological process simulation at the regional scale. |
WOS关键词 | AIRBORNE LIDAR ; VERTICAL STRATIFICATION ; DIVERSITY ; PRODUCTS ; INDEX ; COVER |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
WOS记录号 | WOS:001247307000001 |
出版者 | ELSEVIER |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/205291] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Yang, Xiaohuan |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Ziwei,Cai, Hongyan,Yang, Xiaohuan. A new method for mapping vegetation structure parameters in forested areas using GEDI data[J]. ECOLOGICAL INDICATORS,2024,164:112157. |
APA | Wang, Ziwei,Cai, Hongyan,&Yang, Xiaohuan.(2024).A new method for mapping vegetation structure parameters in forested areas using GEDI data.ECOLOGICAL INDICATORS,164,112157. |
MLA | Wang, Ziwei,et al."A new method for mapping vegetation structure parameters in forested areas using GEDI data".ECOLOGICAL INDICATORS 164(2024):112157. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。