A model on the coupling between cyclic fatigue and microstructure evolution in a metallic glass
文献类型:期刊论文
作者 | Liang, S. Y.6; Zhang, L. T.6; Wang, Y. J.4,5; Wang, B.2,3; Pelletier, J. M.1; Qiao, J. C.6; Wang YJ(王云江)![]() ![]() ![]() |
刊名 | INTERNATIONAL JOURNAL OF FATIGUE
![]() |
出版日期 | 2024-10-01 |
卷号 | 187页码:10 |
关键词 | Cyclic loading Metallic glass Constitutive model Free volume theory Creep deformation |
ISSN号 | 0142-1123 |
DOI | 10.1016/j.ijfatigue.2024.108446 |
通讯作者 | Wang, B.(wangbing0614@nwpu.edu.cn) ; Qiao, J. C.(qjczy@nwpu.edu.cn) |
英文摘要 | Establishing the intrinsic correlation between microstructural heterogeneity and mechanical properties is a challenging issue of metallic glasses. The ratchet behavior was examined in a Zr-based metallic glass under cyclic tensile loading well below the yield point, particularly near the glass transition temperature. It is found that strain evolution during cyclic loading shows heightened sensitivity to temperature and stress rate. Also, creep behavior mirrors the ratchet strain induced by cyclic loading. The proposed constitutive model, integrating the Burgers model with defect concentration based on free volume theory, effectively describes strain evolution during cyclic loading near glass transition temperature. Both macroscopic and microscopic perspectives are included in this model. The results verify that metallic glasses exhibit significant viscous characteristics, displaying noticeable creep deformation under low stress rates and amplitudes, which contributes to ratchet behavior. The fitted parameters show that plastic viscosity decreases with temperature and increases with stress rate, corroborating the decrease of tensile yield stress with temperature increasing; also, the fitted relaxation time increases with loading frequency, reflecting evolution of defect concentration. Structural relaxation competes favorably against stress-driven rejuvenation throughout the cyclic process, suggesting potential in tuning metallic glasses properties through innovation thermos-mechanical processing techniques. |
WOS关键词 | FREE-VOLUME ; STRUCTURAL RELAXATION ; DEFORMATION ; REJUVENATION ; ELEMENT ; CREEP ; FLOW |
资助项目 | NSFC[51971178] ; NSFC[52271153] ; NSFC[52101201] ; Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province[2021JC-12] ; Natural Science Foundation of Chongqing[cstc2021jcyj-msxmX0369] ; Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University[CX2024012] |
WOS研究方向 | Engineering ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:001254798900001 |
资助机构 | NSFC ; Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province ; Natural Science Foundation of Chongqing ; Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University |
源URL | [http://dspace.imech.ac.cn/handle/311007/95799] ![]() |
专题 | 力学研究所_非线性力学国家重点实验室 |
通讯作者 | Wang, B.; Qiao, J. C. |
作者单位 | 1.Univ Lyon, INSA Lyon, MATEIS, UMR CNRS5510, Bat B Pascal, F-69621 Villeurbanne, France 2.NPU Chongqing, Innovat Ctr, Chongqing 401135, Peoples R China 3.Northwestern Polytech Univ, Sch Phys Sci & Technol, Xian 710072, Peoples R China 4.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China 5.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China 6.Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710072, Peoples R China |
推荐引用方式 GB/T 7714 | Liang, S. Y.,Zhang, L. T.,Wang, Y. J.,et al. A model on the coupling between cyclic fatigue and microstructure evolution in a metallic glass[J]. INTERNATIONAL JOURNAL OF FATIGUE,2024,187:10. |
APA | Liang, S. Y..,Zhang, L. T..,Wang, Y. J..,Wang, B..,Pelletier, J. M..,...&Wang YJ.(2024).A model on the coupling between cyclic fatigue and microstructure evolution in a metallic glass.INTERNATIONAL JOURNAL OF FATIGUE,187,10. |
MLA | Liang, S. Y.,et al."A model on the coupling between cyclic fatigue and microstructure evolution in a metallic glass".INTERNATIONAL JOURNAL OF FATIGUE 187(2024):10. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。