中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy

文献类型:期刊论文

作者Chen, Gongyu4; Zhou, Xuewei4; Cai, Songlin2; Zhang, Tianlong1; Zhu, Jiaming3,4,5; Cai SL(蔡松林)
刊名ACTA MECHANICA
出版日期2024-06-28
页码9
ISSN号0001-5970
DOI10.1007/s00707-024-03998-9
通讯作者Cai, Songlin(caisonglin@lnm.imech.ac.cn) ; Zhang, Tianlong(tianlong@ust.hk) ; Zhu, Jiaming(zhujiaming@sdu.edu.cn)
英文摘要Metals with multilayered structures have attracted much attention due to their excellent mechanical and physical properties. While it remains a challenge to achieve nanolayered structures in bulk materials. Spinodal decomposition is an effective and cost-efficient method for producing nano/micro-scale patterns in bulk materials. However, conventional spinodal decomposition usually forms droplet or interpenetrated microstructures, rather than layered structures. From mechanics' point of view, microstructures of materials can be tailored by controlling initial or boundary conditions of equations governing the evolution of microstructures. In this work, by employing computer simulations, we show that nano/micro-layered structures can be achieved in bulk materials by setting a special concentration gradient initial condition upon spinodal decomposition. The mechanism is found to be the "inductive effect" of the multilayered boundary condition induced by the concentration gradient initial condition. The findings of this study provide valuable insights and guidance for developing multilayered materials with desired properties.
WOS关键词MARTENSITIC-TRANSFORMATION ; CONCENTRATION MODULATION ; COMPUTER-SIMULATION ; STRENGTH
资助项目NSFC[12372152] ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project[K2022PE0AB05] ; Shandong Provincial Natural Science Foundation[ZR2023MA058] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515011819] ; Guangdong Basic and Applied Basic Research Foundation[2024A1515012469] ; Natural Science Foundation of Guangdong Province, China[2024A1515011943] ; Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center of Structure and Property for New Energy Materials[231031-K]
WOS研究方向Mechanics
语种英语
WOS记录号WOS:001257014300001
资助机构NSFC ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project ; Shandong Provincial Natural Science Foundation ; Guangdong Basic and Applied Basic Research Foundation ; Natural Science Foundation of Guangdong Province, China ; Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center of Structure and Property for New Energy Materials
源URL[http://dspace.imech.ac.cn/handle/311007/95844]  
专题力学研究所_非线性力学国家重点实验室
通讯作者Cai, Songlin; Zhang, Tianlong; Zhu, Jiaming
作者单位1.Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
3.Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China
4.Shandong Univ, Sch Civil Engn, Jinan 250061, Peoples R China
5.Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Chen, Gongyu,Zhou, Xuewei,Cai, Songlin,et al. Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy[J]. ACTA MECHANICA,2024:9.
APA Chen, Gongyu,Zhou, Xuewei,Cai, Songlin,Zhang, Tianlong,Zhu, Jiaming,&蔡松林.(2024).Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy.ACTA MECHANICA,9.
MLA Chen, Gongyu,et al."Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy".ACTA MECHANICA (2024):9.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。