Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy
文献类型:期刊论文
作者 | Chen, Gongyu4; Zhou, Xuewei4; Cai, Songlin2![]() ![]() ![]() |
刊名 | ACTA MECHANICA
![]() |
出版日期 | 2024-06-28 |
页码 | 9 |
ISSN号 | 0001-5970 |
DOI | 10.1007/s00707-024-03998-9 |
通讯作者 | Cai, Songlin(caisonglin@lnm.imech.ac.cn) ; Zhang, Tianlong(tianlong@ust.hk) ; Zhu, Jiaming(zhujiaming@sdu.edu.cn) |
英文摘要 | Metals with multilayered structures have attracted much attention due to their excellent mechanical and physical properties. While it remains a challenge to achieve nanolayered structures in bulk materials. Spinodal decomposition is an effective and cost-efficient method for producing nano/micro-scale patterns in bulk materials. However, conventional spinodal decomposition usually forms droplet or interpenetrated microstructures, rather than layered structures. From mechanics' point of view, microstructures of materials can be tailored by controlling initial or boundary conditions of equations governing the evolution of microstructures. In this work, by employing computer simulations, we show that nano/micro-layered structures can be achieved in bulk materials by setting a special concentration gradient initial condition upon spinodal decomposition. The mechanism is found to be the "inductive effect" of the multilayered boundary condition induced by the concentration gradient initial condition. The findings of this study provide valuable insights and guidance for developing multilayered materials with desired properties. |
WOS关键词 | MARTENSITIC-TRANSFORMATION ; CONCENTRATION MODULATION ; COMPUTER-SIMULATION ; STRENGTH |
资助项目 | NSFC[12372152] ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project[K2022PE0AB05] ; Shandong Provincial Natural Science Foundation[ZR2023MA058] ; Guangdong Basic and Applied Basic Research Foundation[2023A1515011819] ; Guangdong Basic and Applied Basic Research Foundation[2024A1515012469] ; Natural Science Foundation of Guangdong Province, China[2024A1515011943] ; Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center of Structure and Property for New Energy Materials[231031-K] |
WOS研究方向 | Mechanics |
语种 | 英语 |
WOS记录号 | WOS:001257014300001 |
资助机构 | NSFC ; Qilu Young Talent Program of Shandong University, Zhejiang Lab Open Research Project ; Shandong Provincial Natural Science Foundation ; Guangdong Basic and Applied Basic Research Foundation ; Natural Science Foundation of Guangdong Province, China ; Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center of Structure and Property for New Energy Materials |
源URL | [http://dspace.imech.ac.cn/handle/311007/95844] ![]() |
专题 | 力学研究所_非线性力学国家重点实验室 |
通讯作者 | Cai, Songlin; Zhang, Tianlong; Zhu, Jiaming |
作者单位 | 1.Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China 2.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China 3.Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China 4.Shandong Univ, Sch Civil Engn, Jinan 250061, Peoples R China 5.Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Gongyu,Zhou, Xuewei,Cai, Songlin,et al. Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy[J]. ACTA MECHANICA,2024:9. |
APA | Chen, Gongyu,Zhou, Xuewei,Cai, Songlin,Zhang, Tianlong,Zhu, Jiaming,&蔡松林.(2024).Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy.ACTA MECHANICA,9. |
MLA | Chen, Gongyu,et al."Multilayered microstructures achieved by a concentration gradient initial condition via spinodal decomposition evidenced in the Ti-Nb multifunctional alloy".ACTA MECHANICA (2024):9. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。