中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics

文献类型:期刊论文

作者Chen, Hongqiang5; Liu, Wanbo5; Zhang, Yonghai5; Wei, Jinjia4,5; Du, Wangfang2,3; Zhu, Zhiqiang2,3; Li, Bin1; Wang, Shuai1; Zhu ZQ(朱志强); Du WF(杜王芳)
刊名MICROGRAVITY SCIENCE AND TECHNOLOGY
出版日期2024-05-09
卷号36期号:3页码:14
关键词Pool boiling Heat transfer enhancement Capillary wick Minichannels
ISSN号0938-0108
DOI10.1007/s12217-024-10117-9
通讯作者Zhang, Yonghai(zyh002@mail.xjtu.edu.cn) ; Zhu, Zhiqiang(zhuzhiqiang@imech.ac.cn)
英文摘要The pool boiling heat transfer (phase-change immersion cooling) phenomenon holds significant importance in the energy consumption management of large-power electronics. However, the optimization of surface structure for achieving stable and efficient heat transfer during boiling process remains a significant challenge. Herein, we propose a simplified and direct hybrid surface strategy that combines crossed mini channels and a capillary wick to address the cooling issues faced by high-performance power devices. The copper capillary wick is combined with the crossed mini channel to form a hybrid surface by a simple integrated sintering method. This study investigates the combined effects of different parameters of the capillary wick (average diameter size and powder addition) and minichannels (depth and width) on enhancing the nucleate boiling performance on these hybrid surfaces. The working fluid used in this investigation is HFE-7100. At Delta Tsub = 30 K, the CHF achieved by the hybrid surfaces combining capillary wicks and minichannels can reach 131 W/cm2, while the highest HTC is measured at 2.32 W/(cm2K), both CHF and HTC achieve multiplicative enhancement compared to smooth surfaces. Furthermore, we have developed a CHF prediction model for the hybrid surfaces, which exhibits a prediction error of less than 15%.
WOS关键词BOILING HEAT-TRANSFER ; FRICTIONAL PRESSURE-DROP ; PERFORMANCE ; GRAPHITE ; FC-72 ; TUBE
资助项目National Key R&D Program of China[2022YFF0503502] ; National Natural Science Foundation of China[51976163] ; Young Talent Support Plan of Xi'an Jiaotong University ; The Fundamental Research Funds for the Central Universities[XTR052022011] ; The Fundamental Research Funds for the Central Universities[XZY022023029] ; Key research and development program in Shaanxi Province of China[2021GXLH-Z-076] ; Joint Funds of the National Natural Science Foundation of China[U2141218] ; Second batch of scientific experiment proposals aboard China Space Station[TGMTYY00-JY-53-1.00] ; ESA-CMSA Joint Boiling Project[TGMTYY00-RW-05-1.00] ; Open Project of the State Key Laboratory of Superabrasives[GXNGJSKL-2022-02] ; Opening project of CAS Key Laboratory of Microgravity[NML202306]
WOS研究方向Engineering ; Thermodynamics ; Mechanics
语种英语
WOS记录号WOS:001251589500002
资助机构National Key R&D Program of China ; National Natural Science Foundation of China ; Young Talent Support Plan of Xi'an Jiaotong University ; The Fundamental Research Funds for the Central Universities ; Key research and development program in Shaanxi Province of China ; Joint Funds of the National Natural Science Foundation of China ; Second batch of scientific experiment proposals aboard China Space Station ; ESA-CMSA Joint Boiling Project ; Open Project of the State Key Laboratory of Superabrasives ; Opening project of CAS Key Laboratory of Microgravity
源URL[http://dspace.imech.ac.cn/handle/311007/95769]  
专题力学研究所_国家微重力实验室
通讯作者Zhang, Yonghai; Zhu, Zhiqiang
作者单位1.State Key Lab Superabras, Zhengzhou 450001, Peoples R China
2.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Mech, Key Lab Micrograv, Beijing 100190, Peoples R China
4.Xi An Jiao Tong Univ, Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
5.Xi An Jiao Tong Univ, Sch Chem Engn & Technol, 28 Xianning West Rd, Xian 710049, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Chen, Hongqiang,Liu, Wanbo,Zhang, Yonghai,et al. Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics[J]. MICROGRAVITY SCIENCE AND TECHNOLOGY,2024,36(3):14.
APA Chen, Hongqiang.,Liu, Wanbo.,Zhang, Yonghai.,Wei, Jinjia.,Du, Wangfang.,...&杜王芳.(2024).Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics.MICROGRAVITY SCIENCE AND TECHNOLOGY,36(3),14.
MLA Chen, Hongqiang,et al."Hybrid Surfaces with Capillary Wick and Minichannels for Enhancement of Phase-Change Immersion Cooling of Power Electronics".MICROGRAVITY SCIENCE AND TECHNOLOGY 36.3(2024):14.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。