Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism
文献类型:期刊论文
作者 | Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang |
刊名 | Plos One
![]() |
出版日期 | 2023 |
卷号 | 18期号:2页码:22 |
ISSN号 | 1932-6203 |
DOI | 10.1371/journal.pone.0279248 |
英文摘要 | Marine ships are the transport vehicle in the ocean and instance segmentation of marine ships is an accurate and efficient analysis approach to achieve a quantitative understanding of marine ships, for example, their relative locations to other ships or obstacles. This relative spatial information is crucial for developing unmanned ships to avoid crashing. Visible light imaging, e.g. using our smartphones, is an efficient way to obtain images of marine ships, however, so far there is a lack of suitable open-source visible light datasets of marine ships, which could potentially slow down the development of unmanned ships. To address the problem of insufficient datasets, here we built two instance segmentation visible light datasets of marine ships, MariBoats and MariBoatsSubclass, which could facilitate the current research on instance segmentation of marine ships. Moreover, we applied several existing instance segmentation algorithms based on neural networks to analyze our datasets, but their performances were not satisfactory. To improve the segmentation performance of the existing models on our datasets, we proposed a global and local attention mechanism for neural network models to retain both the global location and semantic information of marine ships, resulting in an average segmentation improvement by 4.3% in terms of mean average precision. Therefore, the presented new datasets and the new attention mechanism will greatly advance the marine ship relevant research and applications. |
URL标识 | 查看原文 |
语种 | 英语 |
源URL | [http://ir.ciomp.ac.cn/handle/181722/67878] ![]() |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang. Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism[J]. Plos One,2023,18(2):22. |
APA | Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang.(2023).Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism.Plos One,18(2),22. |
MLA | Z. Q. Sun, C. N. Meng, T. Huang, Z. Q. Zhang and S. J. Chang."Marine ship instance segmentation by deep neural networks using a global and local attention (GALA) mechanism".Plos One 18.2(2023):22. |
入库方式: OAI收割
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。