中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory

文献类型:期刊论文

作者C. Wen, T. Nie, M. Li, X. Wang and L. Huang
刊名Sensors
出版日期2023
卷号23期号:20
ISSN号14248220
DOI10.3390/s23208442
英文摘要Under low-illumination conditions, the quality of the images collected by the sensor is significantly impacted, and the images have visual problems such as noise, artifacts, and brightness reduction. Therefore, this paper proposes an effective network based on Retinex for low-illumination image enhancement. Inspired by Retinex theory, images are decomposed into two parts in the decomposition network, and sent to the sub-network for processing. The reconstruction network constructs global and local residual convolution blocks to denoize the reflection component. The enhancement network uses frequency information, combined with attention mechanism and residual density network to enhance contrast and improve the details of the illumination component. A large number of experiments on public datasets show that our method is superior to existing methods in both quantitative and visual aspects. © 2023 by the authors.
URL标识查看原文
源URL[http://ir.ciomp.ac.cn/handle/181722/68014]  
专题中国科学院长春光学精密机械与物理研究所
推荐引用方式
GB/T 7714
C. Wen, T. Nie, M. Li, X. Wang and L. Huang. Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory[J]. Sensors,2023,23(20).
APA C. Wen, T. Nie, M. Li, X. Wang and L. Huang.(2023).Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory.Sensors,23(20).
MLA C. Wen, T. Nie, M. Li, X. Wang and L. Huang."Image Restoration via Low-Illumination to Normal-Illumination Networks Based on Retinex Theory".Sensors 23.20(2023).

入库方式: OAI收割

来源:长春光学精密机械与物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。