Optimal sensor placement for ensemble-based data assimilation using gradient-weighted class activation mapping
文献类型:期刊论文
作者 | Xu ZY(许昭越)1,2; Wang SZ(王士召)1,2![]() ![]() |
刊名 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2024-10-01 |
卷号 | 514页码:20 |
关键词 | Optimal sensor placement GradCAM CNN Ensemble Kalman method |
ISSN号 | 0021-9991 |
DOI | 10.1016/j.jcp.2024.113224 |
通讯作者 | Wang, Shizhao(wangsz@lnm.imech.ac.cn) ; Zhang, Xin-Lei(zhangxinlei@imech.ac.cn) |
英文摘要 | We introduce an optimal sensor placement method using convolutional neural networks for ensemble -based data assimilation. The proposed method utilizes the gradient -weighted class activation mapping of the convolutional neural networks to identify important regions for assimilation processes. It is achieved by using the initial ensemble of samples for data assimilation as training data to construct a convolutional neural network -based surrogate model. In doing so, the method can estimate optimal sensor locations in an a priori manner, allowing for sensor placement before conducting data assimilation processing. Moreover, the gradientweighted class activation mapping is used to alleviate the effect of error accumulation during the backpropagation process through global averaging. Further, these observation sensors are incorporated to reconstruct mean turbulent flow fields based on the ensemble Kalman method. The proposed optimal sensor placement method is applied to two flow applications with complex geometries, i.e., flows around periodic hills and an axisymmetric body of revolution. Both cases demonstrate that the proposed method can significantly reduce the number of sensors without sacrificing the accuracy of the reconstructed flow field. |
分类号 | 一类/力学重要期刊 |
WOS关键词 | NEURAL-NETWORK ; FLUID-FLOW ; MODEL ; OPTIMIZATION ; SIMULATION ; ALGORITHM ; SPARSE ; DRIVEN |
资助项目 | NSFC Basic Science Center Program for 'Multiscale Problems in Nonlinear Mechanics'[11988102] ; National Natural Science Foundation of China[92252203] ; National Natural Science Foundation of China[91952301] ; National Natural Science Foundation of China[12102435] ; CAS Project for Young Scientists in Basic Research[YSBR-087] ; CAST Young Elite Scientists Sponsorship Program[2022QNRC001] |
WOS研究方向 | Computer Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:001264450400001 |
资助机构 | NSFC Basic Science Center Program for 'Multiscale Problems in Nonlinear Mechanics' ; National Natural Science Foundation of China ; CAS Project for Young Scientists in Basic Research ; CAST Young Elite Scientists Sponsorship Program |
其他责任者 | Wang, Shizhao ; Zhang, Xin-Lei |
源URL | [http://dspace.imech.ac.cn/handle/311007/95983] ![]() |
专题 | 力学研究所_非线性力学国家重点实验室 |
作者单位 | 1.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, LNM, Inst Mech, Beijing 100190, Peoples R China; |
推荐引用方式 GB/T 7714 | Xu ZY,Wang SZ,Zhang XL,et al. Optimal sensor placement for ensemble-based data assimilation using gradient-weighted class activation mapping[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2024,514:20. |
APA | 许昭越,王士召,张鑫磊,&何国威.(2024).Optimal sensor placement for ensemble-based data assimilation using gradient-weighted class activation mapping.JOURNAL OF COMPUTATIONAL PHYSICS,514,20. |
MLA | 许昭越,et al."Optimal sensor placement for ensemble-based data assimilation using gradient-weighted class activation mapping".JOURNAL OF COMPUTATIONAL PHYSICS 514(2024):20. |
入库方式: OAI收割
来源:力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。