中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Generative Adversarial Network-based Enhancement for Super-Resolution Reconstruction in Division of Focal Plane Images

文献类型:会议论文

作者Li, Shuo2,3; Wang, Weifeng3; Ji, Ran2,3; Luo, Zhanyi1,3
出版日期2023
会议日期2023-10-20
会议地点Hybrid, Xi'an, China
关键词Polarimetric imaging IFoV Super-Resolution construction SRGAN Deeeplearning Introduction
DOI10.1109/ICEMCE60359.2023.10490495
页码879-883
英文摘要

Advancements in technology have refined polarization imaging systems for realtime, multi-directional imaging. However, their super-pixel design leads to instantaneous field of view (IFoV) issues. Addressing this, a super-resolution method using the Super-Resolution Generative Adversarial Network (SRGAN) has been introduced. This method efficiently recovers high-quality details from low-resolution polarimetric images. Using PSNR and SSIM metrics, this method demonstrates enhanced performance over existing techniques. © 2023 IEEE.

产权排序1
会议录2023 7th International Conference on Electrical, Mechanical and Computer Engineering, ICEMCE 2023
会议录出版者Institute of Electrical and Electronics Engineers Inc.
语种英语
ISBN号9798350382877
源URL[http://ir.opt.ac.cn/handle/181661/97445]  
专题西安光学精密机械研究所_光学定向与测量技术研究室
通讯作者Wang, Weifeng
作者单位1.School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
2.School of Optoelectronics, University of Chinese Academy of Sciences, Xi'an, China;
3.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China;
推荐引用方式
GB/T 7714
Li, Shuo,Wang, Weifeng,Ji, Ran,et al. Generative Adversarial Network-based Enhancement for Super-Resolution Reconstruction in Division of Focal Plane Images[C]. 见:. Hybrid, Xi'an, China. 2023-10-20.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。