中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Detection Method for Typical Component of Space Aircraft Based on YOLOv3 Algorithm

文献类型:会议论文

作者He, Bian1,2,3; Jianzhong, Cao1,3; Cheng, Li1,3; Junpeng, Dong1,3; Zhongling, Ruan1,3; Chao, Mei1,3
出版日期2024
会议日期2024-02-27
会议地点Changchun, China
关键词object detection Space debris Deep learning YOLOv3
DOI10.1109/EEBDA60612.2024.10485846
页码1726-1729
英文摘要

A solar panel recognition method based on YOLOv3 deep learning algorithm is proposed to address issues such as inaccurate recognition of traditional algorithms in space solar panel detection. First, this paper scales the dataset images to 416 × 416, then uses Labelme to annotate the data and transform the bounding box position information, and finally uses the YOLOv3 algorithm framework for model training. The results show that the recall, F1 score and accuracy of YOLOv3 algorithm are all above 80%. The YOLOv3 deep learning algorithm meets the requirements for real-time detection of solar panels in terms of accuracy. © 2024 IEEE.

产权排序1
会议录2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms, EEBDA 2024
会议录出版者Institute of Electrical and Electronics Engineers Inc.
语种英语
ISBN号9798350380989
源URL[http://ir.opt.ac.cn/handle/181661/97434]  
专题西安光学精密机械研究所_动态光学成像研究室
通讯作者Zhongling, Ruan
作者单位1.Xi'an Key Laboratory of Spacecraft Optical Imaging and Measurement Technology, Xi'an, China
2.University of Chinese Academy of Sciences, Beijing, China;
3.Xi'an Institute of Optics and Precision Mechanics of Cas, Xi'an, China;
推荐引用方式
GB/T 7714
He, Bian,Jianzhong, Cao,Cheng, Li,et al. A Detection Method for Typical Component of Space Aircraft Based on YOLOv3 Algorithm[C]. 见:. Changchun, China. 2024-02-27.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。