中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dislocation-mediated migration of the α/β interfaces in titanium

文献类型:期刊论文

作者Zhang, Jin-Yu1,8; Sun, Zhi-Peng4; Qiu, Dong3; Dai, Fu-Zhi2; Zhang, Yang-Sheng5,8; Xu, Dongsheng7; Zhang, Wen-Zheng6,8
刊名ACTA MATERIALIA
出版日期2023-12-01
卷号261页码:12
关键词Interface migration Molecular dynamics Titanium Dislocation glide Surface precipitate
ISSN号1359-6454
DOI10.1016/j.actamat.2023.119364
通讯作者Xu, Dongsheng(dsxu@imr.ac.cn) ; Zhang, Wen-Zheng(zhangwz@tsinghua.edu.cn)
英文摘要Interphase boundaries are essential in the deformation and phase transformations in titanium (Ti) alloys. While static structures of semicoherent alpha/beta interfaces in various Ti alloys have been carefully examined, their migration behavior at atomic scales is far less clear. In this study, we employed molecular dynamics simulations to investigate the migration of the semicoherent alpha/beta interface in pure Ti. The interface migration behavior shows a shear-coupled feature with the interface dislocation glide and a macroscopic shear. The simulation reveals that both the glide direction of the dislocations with respect to the interface and the dislocation spacing strongly influence the migration rate, and the low-index glide plane of the interface dislocation plays a minor role. The dependence of interface mobility on temperatures confirms the critical role of thermal activation during the interface migration, especially for activating the interface dislocation glide. Furthermore, the shear-coupled interface migration driven by element partition is simulated using a newly developed Ti-Mo potential, consistent with the displacive-diffusional features previously observed in the surface precipitates. The simulated interface migration mode is validated by comparing it with the crystallography features of surface precipitates in a Ti-Cr alloy. The interface energy and mobility obtained from simulations further explain why the distinctive crystallographic features of the surface precipitates observed experimentally are favored over other candidate interfaces. The present study has explored an approach for systematically examining thermodynamic and kinetic factors governing the development of phase transformation crystallography at different temperatures and chemical driving forces.
资助项目National Natural Science Foundation of China[51871131] ; National Key Research and Development Program of China[2016YFB0701304] ; National Key Research and Development Program of China[2021YFB3702604] ; National Science and Technology[J2019 -VI-0005-0119] ; Informatization Plan of Chinese Academy of Sciences[CAS-WX2021PY-0103]
WOS研究方向Materials Science ; Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:001088746800001
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China ; National Science and Technology ; Informatization Plan of Chinese Academy of Sciences
源URL[http://ir.imr.ac.cn/handle/321006/177858]  
专题金属研究所_中国科学院金属研究所
通讯作者Xu, Dongsheng; Zhang, Wen-Zheng
作者单位1.Univ Claude Bernard Lyon 1, Inst Lumiere Matiere, CNRS, F-69622 Villeurbanne, France
2.Artificial Intelligence Sci Inst, Beijing 100084, Peoples R China
3.RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, VIC 3000, Australia
4.Nucl Power Inst China, Sci & Technol Reactor Syst Design Technol Lab, Chengdu 610041, Peoples R China
5.Beijing Inst Radio Measurement, Beijing 100854, Peoples R China
6.Fujian Univ Technol, Sch Mat Sci & Technol, Fuzhou 350118, Peoples R China
7.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
8.Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Jin-Yu,Sun, Zhi-Peng,Qiu, Dong,et al. Dislocation-mediated migration of the α/β interfaces in titanium[J]. ACTA MATERIALIA,2023,261:12.
APA Zhang, Jin-Yu.,Sun, Zhi-Peng.,Qiu, Dong.,Dai, Fu-Zhi.,Zhang, Yang-Sheng.,...&Zhang, Wen-Zheng.(2023).Dislocation-mediated migration of the α/β interfaces in titanium.ACTA MATERIALIA,261,12.
MLA Zhang, Jin-Yu,et al."Dislocation-mediated migration of the α/β interfaces in titanium".ACTA MATERIALIA 261(2023):12.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。