中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery

文献类型:期刊论文

作者Liu, Ruijia1,2; Yang, Lingxu3; Wang, Wenjun3; Zhao, Enyue3; Wang, Baotian4,5; Zhang, Xue1; Liu, Huijun3; Zeng, Chaoliu3
刊名MATERIALS TODAY ENERGY
出版日期2023-06-01
卷号34页码:10
关键词Sodium ion storage Vanadium nitride anode Molten salt synthesis Redox pseudocapacitance Cycle stability
ISSN号2468-6069
DOI10.1016/j.mtener.2023.101300
通讯作者Zhao, Enyue(eyzhao@sslab.org.cn) ; Liu, Huijun(hui_jun_liu@163.com) ; Zeng, Chaoliu(clzeng@imr.ac.cn)
英文摘要Structure-stable anodes are essential for achieving long-cycling stability in sodium-ion batteries. However, a large cycled structure/volume change is inevitable in conversion-type or alloying-reaction anodes, which make them intrinsically unsuitable for durable sodium-ion batteries . Here, we synthesized carbon fiber-anchored vanadium nitride nanoparticles (denoted as VN@CF) through a simple molten-salt method without NH3 treatment. The VN@CF anode shows an ultra-stable Na-storage structure with a discharge capacity of 204 mAh/g at 0.1 A/g after 500 cycles. More notably, it shows remarkably longcycling stability over 6600 cycles without capacity attenuation at 1.0 A/g. Multiple ex-situ characterizations, such as X-ray diffraction and X-ray photoelectron spectroscopy, indicate that the sodium storage behavior of VN@CF is a surface redox-related pseudocapacitive process, which is further supported by theoretical calculations. Such surface pseudocapacitive could not only enhance the sodium-storage structure stability but increase the redox reaction kinetics, which should be the origins of VN@CF's superior electrochemical properties. Our work paves a way for designing structure-stable energy storage materials based on the surface redox pseudocapacitance mechanism. (c) 2023 Elsevier Ltd. All rights reserved.
资助项目National Natural Science Foundation of China[51671204] ; National Natural Science Foundation of China[12105197] ; Guangdong Basic and Applied Basic Research Foundation, China[2019A1515110825] ; open research fund of Songshan Lake Materials Laboratory[2022SLABFK04]
WOS研究方向Chemistry ; Energy & Fuels ; Materials Science
语种英语
WOS记录号WOS:000989628600001
出版者ELSEVIER SCI LTD
资助机构National Natural Science Foundation of China ; Guangdong Basic and Applied Basic Research Foundation, China ; open research fund of Songshan Lake Materials Laboratory
源URL[http://ir.imr.ac.cn/handle/321006/177897]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhao, Enyue; Liu, Huijun; Zeng, Chaoliu
作者单位1.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
2.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
3.Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
4.Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
5.Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
推荐引用方式
GB/T 7714
Liu, Ruijia,Yang, Lingxu,Wang, Wenjun,et al. Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery[J]. MATERIALS TODAY ENERGY,2023,34:10.
APA Liu, Ruijia.,Yang, Lingxu.,Wang, Wenjun.,Zhao, Enyue.,Wang, Baotian.,...&Zeng, Chaoliu.(2023).Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery.MATERIALS TODAY ENERGY,34,10.
MLA Liu, Ruijia,et al."Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery".MATERIALS TODAY ENERGY 34(2023):10.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。