中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Achieving high strength-ductility synergy in a Mg 97 Y 1 Zn 1 Ho 1 alloy via a nano-spaced long-period stacking-ordered phase

文献类型:期刊论文

作者Fan, Mingyu3; Cui, Ye3; Zhang, Yang3; Wei, Xinghao3; Cao, Xue2; Liaw, Peter K.1; Yang, Yuansheng4; Zhang, Zhongwu3
刊名JOURNAL OF MAGNESIUM AND ALLOYS
出版日期2023-04-01
卷号11期号:4页码:1321-1331
关键词Mg wrought alloy Mechanical properties Long-period stacking-ordered (LPSO) phase Age-strengthening behavior Strengthening mechanism
ISSN号2213-9567
DOI10.1016/j.jma.2022.01.0022213-9567
通讯作者Cui, Ye(cuiye@hrbeu.edu.cn) ; Zhang, Zhongwu(zwzhang@hrbeu.edu.cn)
英文摘要Achieving high strength in Mg alloys is usually accompanied by ductility loss. Here, a novel Mg97Y1Zn1Ho1 at.% alloy with a yield strength of 403 MPa and an elongation of 10% is developed. The strength-ductility synergy is obtained by a comprehensive strategy, including a lamella bimodal microstructure design and the introduction of nano-spaced solute-segregated 14H long-period stacking-ordered phase (14H LPSO phase) through rare-earth Ho alloying. The lamella bimodal microstructure consists of elongated un-recrystallized (un-DRXed) coarse grains and fine dynamically-recrystallized grains (DRXed regions). The nano-spaced solute-segregated 14H LPSO phase is distributed in DRXed regions. The outstanding yield strength is mainly contributed by grain-boundary strengthening, 18R LPSO strengthening, and fiber -like reinforcement strengthening from the nano-spaced 14H LPSO phase. The high elongation is due primarily to the combined effects of the bimodal and lamellar microstructures through enhancing the work-hardening capability.& COPY; 2022 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University
资助项目National Key Research and Development Project[2018YFE0115800] ; National Key Research and Development Project[2020YFE0202600] ; China National Nuclear Corporation[CNNC2019YTEP-HEU01] ; China National Nuclear Corporation[CNNC2021YTEP-HEU01] ; NSFC[51701051] ; NSFC[52001083] ; NSFC[52171111] ; NSFC[U2141207] ; China Postdoctoral Science Foundation[2019T120255] ; Natural Science Foundation of Heilongjiang[LH2019E030] ; Heilongjiang Touyan Innovation Team Program ; U.S. National Science Foundation[DMR-1611180] ; U.S. National Science Foundation[1809640]
WOS研究方向Metallurgy & Metallurgical Engineering
语种英语
WOS记录号WOS:001015239900001
出版者KEAI PUBLISHING LTD
资助机构National Key Research and Development Project ; China National Nuclear Corporation ; NSFC ; China Postdoctoral Science Foundation ; Natural Science Foundation of Heilongjiang ; Heilongjiang Touyan Innovation Team Program ; U.S. National Science Foundation
源URL[http://ir.imr.ac.cn/handle/321006/178393]  
专题金属研究所_中国科学院金属研究所
通讯作者Cui, Ye; Zhang, Zhongwu
作者单位1.Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
2.Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Peoples R China
3.Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China
4.Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
推荐引用方式
GB/T 7714
Fan, Mingyu,Cui, Ye,Zhang, Yang,et al. Achieving high strength-ductility synergy in a Mg 97 Y 1 Zn 1 Ho 1 alloy via a nano-spaced long-period stacking-ordered phase[J]. JOURNAL OF MAGNESIUM AND ALLOYS,2023,11(4):1321-1331.
APA Fan, Mingyu.,Cui, Ye.,Zhang, Yang.,Wei, Xinghao.,Cao, Xue.,...&Zhang, Zhongwu.(2023).Achieving high strength-ductility synergy in a Mg 97 Y 1 Zn 1 Ho 1 alloy via a nano-spaced long-period stacking-ordered phase.JOURNAL OF MAGNESIUM AND ALLOYS,11(4),1321-1331.
MLA Fan, Mingyu,et al."Achieving high strength-ductility synergy in a Mg 97 Y 1 Zn 1 Ho 1 alloy via a nano-spaced long-period stacking-ordered phase".JOURNAL OF MAGNESIUM AND ALLOYS 11.4(2023):1321-1331.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。