中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network

文献类型:期刊论文

作者Wang, Hai2; Koenigsmann, Konrad4; Zhang, Shuyuan2; Li, Yi1,2; Liu, Huan1,2; Liu, Hui2; Ren, Ling2,3; Qiu, Dong5; Yang, Ke2
刊名INTERNATIONAL JOURNAL OF PLASTICITY
出版日期2023-09-01
卷号168页码:11
关键词Superplasticity In-situ observation Thermostability Nanocrystalline
ISSN号0749-6419
DOI10.1016/j.ijplas.2023.103694
通讯作者Ren, Ling(lren@imr.ac.cn) ; Qiu, Dong(dong.qiu2@rmit.edu.au)
英文摘要Superplasticity is a highly sought-after property of components manufactured with complex ge-ometries in metal forming processes. However, superplasticity usually occurs at high tempera-tures and/or low strain rates, which entails high energy consumption, long processing time, and severe surface oxidation. Herein, we have developed a multiphase nanocrystalline network (MPNN) in a Ti6Al4V5Cu model alloy, where the grain boundary & beta; phases promote the sliding and rotation of ultrafine & alpha; grains, while the nanosized Ti2Cu particles pin down the & alpha;/& beta; bound-aries to maintain the thermostability of the nanostructure. Results show that the onset temper-ature for superplasticity of the model alloy is 250 degrees C lower than that of the Ti6Al4V alloy at the strain rate of 10-4 s-1. Remarkably, superplasticity was also observed at an extremely high strain rate of 1 s -1 at 750 degrees C, which is 2-4 orders of magnitude larger than conventional superplastic metals. The present work is of great significance in developing more economical and efficient superplastic deformation processes.
资助项目National Key Research and Development Program of China[2022YFC2406003] ; National Key Research and Development Program of China[2022YFC2406001] ; Bintech-IMR R amp; D Program[GYY-JSBU-2022-008] ; IMR Innovation Fund[2023-PY06] ; Natural Science Foundation of Liaoning[2023-MS-022]
WOS研究方向Engineering ; Materials Science ; Mechanics
语种英语
WOS记录号WOS:001036844500001
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Key Research and Development Program of China ; Bintech-IMR R amp; D Program ; IMR Innovation Fund ; Natural Science Foundation of Liaoning
源URL[http://ir.imr.ac.cn/handle/321006/178759]  
专题金属研究所_中国科学院金属研究所
通讯作者Ren, Ling; Qiu, Dong
作者单位1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang, Peoples R China
3.Binzhou Inst Technol, Shandong Key Lab Adv Aluminium Mat & Technol, Weiqiao UCAS Sci & Technol Pk, Binzhou 256606, Peoples R China
4.Univ Chicago, Chicago, IL 60637 USA
5.RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, Vic, Australia
推荐引用方式
GB/T 7714
Wang, Hai,Koenigsmann, Konrad,Zhang, Shuyuan,et al. Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2023,168:11.
APA Wang, Hai.,Koenigsmann, Konrad.,Zhang, Shuyuan.,Li, Yi.,Liu, Huan.,...&Yang, Ke.(2023).Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network.INTERNATIONAL JOURNAL OF PLASTICITY,168,11.
MLA Wang, Hai,et al."Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network".INTERNATIONAL JOURNAL OF PLASTICITY 168(2023):11.

入库方式: OAI收割

来源:金属研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。