Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network
文献类型:期刊论文
作者 | Wang, Hai2; Koenigsmann, Konrad4; Zhang, Shuyuan2; Li, Yi1,2; Liu, Huan1,2; Liu, Hui2; Ren, Ling2,3; Qiu, Dong5; Yang, Ke2 |
刊名 | INTERNATIONAL JOURNAL OF PLASTICITY
![]() |
出版日期 | 2023-09-01 |
卷号 | 168页码:11 |
关键词 | Superplasticity In-situ observation Thermostability Nanocrystalline |
ISSN号 | 0749-6419 |
DOI | 10.1016/j.ijplas.2023.103694 |
通讯作者 | Ren, Ling(lren@imr.ac.cn) ; Qiu, Dong(dong.qiu2@rmit.edu.au) |
英文摘要 | Superplasticity is a highly sought-after property of components manufactured with complex ge-ometries in metal forming processes. However, superplasticity usually occurs at high tempera-tures and/or low strain rates, which entails high energy consumption, long processing time, and severe surface oxidation. Herein, we have developed a multiphase nanocrystalline network (MPNN) in a Ti6Al4V5Cu model alloy, where the grain boundary & beta; phases promote the sliding and rotation of ultrafine & alpha; grains, while the nanosized Ti2Cu particles pin down the & alpha;/& beta; bound-aries to maintain the thermostability of the nanostructure. Results show that the onset temper-ature for superplasticity of the model alloy is 250 degrees C lower than that of the Ti6Al4V alloy at the strain rate of 10-4 s-1. Remarkably, superplasticity was also observed at an extremely high strain rate of 1 s -1 at 750 degrees C, which is 2-4 orders of magnitude larger than conventional superplastic metals. The present work is of great significance in developing more economical and efficient superplastic deformation processes. |
资助项目 | National Key Research and Development Program of China[2022YFC2406003] ; National Key Research and Development Program of China[2022YFC2406001] ; Bintech-IMR R amp; D Program[GYY-JSBU-2022-008] ; IMR Innovation Fund[2023-PY06] ; Natural Science Foundation of Liaoning[2023-MS-022] |
WOS研究方向 | Engineering ; Materials Science ; Mechanics |
语种 | 英语 |
WOS记录号 | WOS:001036844500001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Key Research and Development Program of China ; Bintech-IMR R amp; D Program ; IMR Innovation Fund ; Natural Science Foundation of Liaoning |
源URL | [http://ir.imr.ac.cn/handle/321006/178759] ![]() |
专题 | 金属研究所_中国科学院金属研究所 |
通讯作者 | Ren, Ling; Qiu, Dong |
作者单位 | 1.Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang, Peoples R China 2.Chinese Acad Sci, Inst Met Res, Shi changxu Innovat Ctr Adv Mat, Shenyang, Peoples R China 3.Binzhou Inst Technol, Shandong Key Lab Adv Aluminium Mat & Technol, Weiqiao UCAS Sci & Technol Pk, Binzhou 256606, Peoples R China 4.Univ Chicago, Chicago, IL 60637 USA 5.RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, Vic, Australia |
推荐引用方式 GB/T 7714 | Wang, Hai,Koenigsmann, Konrad,Zhang, Shuyuan,et al. Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network[J]. INTERNATIONAL JOURNAL OF PLASTICITY,2023,168:11. |
APA | Wang, Hai.,Koenigsmann, Konrad.,Zhang, Shuyuan.,Li, Yi.,Liu, Huan.,...&Yang, Ke.(2023).Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network.INTERNATIONAL JOURNAL OF PLASTICITY,168,11. |
MLA | Wang, Hai,et al."Extraordinary superplasticity at low homologous temperature and high strain rate enabled by a multiphase nanocrystalline network".INTERNATIONAL JOURNAL OF PLASTICITY 168(2023):11. |
入库方式: OAI收割
来源:金属研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。