中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Heat transfer and visualization of flow boiling on nanowire surfaces in the microchannel

文献类型:期刊论文

作者Sun, Jia6; Lin, Yuhao6; Li, Junye4,5; Tang, Weiyu3,4,5,6; Li, Wei6; Ahmad, Waqas6; Zhao JF(赵建福)1,2
刊名APPLIED THERMAL ENGINEERING
出版日期2024-11-01
卷号256页码:16
关键词Microchannel Nanowire Flow pattern Flow boiling Heat transfer
ISSN号1359-4311
DOI10.1016/j.applthermaleng.2024.124064
通讯作者Li, Junye(lijunye@zju.edu.cn) ; Tang, Weiyu(tangweiyu@zju.edu.cn) ; Li, Wei(weili96@zju.edu.cn)
英文摘要Enhancing heat transfer efficiency is crucial in heat exchange equipment. Although previous studies have focused on developing micro/nano-structured surfaces, further exploration into how surface structure can improve heat transfer efficiency (H) by altering bubble dynamics is still needed. This study aimed to innovatively analyze the impact of titanium carbide (TiC) nanowire heights-specifically 4 mu m and 12 mu m-on boiling heat transfer performance. Conducted under varying heat flux (Q) (50-200 W/m2) and mass flux (G) (200-300 kg/m2 & sdot;s), our experiments assessed H, pressure drop (P), and local boiling curves. Using a high-speed camera, we observed complex periodic flow patterns on the 4 mu m nanowire surface, including elongated bubble formation, expansion, local dryout, and subsequent fluid rewetting. Results showed that the 12 mu m nanowire surface increased H by up to 19.84% in single-phase conditions, while the 4 mu m nanowire surface increased H by up to 27.9% in two-phase conditions. These findings highlight the significant role of nanowire length and arrangement in optimizing boiling heat transfer performance. This work lays a foundation for further investigations into diverse nanowire materials and configurations.
分类号一类
WOS关键词TRANSFER ENHANCEMENT ; MICROSTRUCTURE ; MECHANISMS
资助项目Space Application System of China Manned Space Program[YYWT-0601-EXP-18] ; Space Application System of China Manned Space Program[LT3-10] ; National Science Foundation of China[52320105001] ; National Key R & D Program of China[2022YFF0503502]
WOS研究方向Thermodynamics ; Energy & Fuels ; Engineering ; Mechanics
语种英语
WOS记录号WOS:001287621600001
资助机构Space Application System of China Manned Space Program ; National Science Foundation of China ; National Key R & D Program of China
其他责任者Li, Junye ; Tang, Weiyu ; Li, Wei
源URL[http://dspace.imech.ac.cn/handle/311007/96280]  
专题力学研究所_国家微重力实验室
作者单位1.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Mech, CAS Key Lab Micrograv, Beijing 100190, Peoples R China;
3.Zhejiang Univ, Dept Elect Engn, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China;
4.ZJU, Inst Adv Semicond, Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Zhejiang, Peoples R China;
5.ZJU, Hangzhou Global Sci & Technol Innovat Ctr, Key Lab Power Semicond Mat & Devices Zhejiang Prov, Hangzhou 311215, Zhejiang, Peoples R China;
6.Zhejiang Univ, Dept Energy Engn, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China;
推荐引用方式
GB/T 7714
Sun, Jia,Lin, Yuhao,Li, Junye,et al. Heat transfer and visualization of flow boiling on nanowire surfaces in the microchannel[J]. APPLIED THERMAL ENGINEERING,2024,256:16.
APA Sun, Jia.,Lin, Yuhao.,Li, Junye.,Tang, Weiyu.,Li, Wei.,...&赵建福.(2024).Heat transfer and visualization of flow boiling on nanowire surfaces in the microchannel.APPLIED THERMAL ENGINEERING,256,16.
MLA Sun, Jia,et al."Heat transfer and visualization of flow boiling on nanowire surfaces in the microchannel".APPLIED THERMAL ENGINEERING 256(2024):16.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。