Attention-Guided CNN-Transformer Hybrid Network for Hyperspectral Image Classification
文献类型:会议论文
作者 | Chen, Sikai3; Xue, Jintao1,2; Chen, Yihan1; Gu, Yuean1; Yin, Haoran1,3; Bao, Shenlei1,2; Li, Guike1,3; Wang, Binhao1,2; Qi, Nan1,3 |
出版日期 | 2024 |
会议日期 | 2024-04-21 |
会议地点 | Denver, CO, United states |
关键词 | Hyperspectral convolutional neural network transformer attention-guided |
DOI | 10.1109/CICC60959.2024.10529008 |
英文摘要 | The emerging AI computing system asks for high-speed, large-scale, and power-efficient interconnects. As the system scales-out reaching tens-of-meters, electrical links cannot support higher bandwidth (BW) at affordable power consumption. Silicon photonic (SiPh) technology enables the fabrication of both photonic integrated circuits (PIC) and electronic integrated circuits (EIC) on the same wafer. By integrating optical transceivers into the xPU package, fiber channels could be directly attached to the chip edge, building up the highly integrated optical-IO. SiPh micro-ring resonator (MRR) is an attractive solution due to small footprint and its capability of wavelength selection [1]-[3]. To fit more wavelengths into one full-spectral-range (FSR) of the MRR, dense wavelength-division multiplexing (DWDM) has been adopted, which brings design challenges on anti-aliasing and wavelength stabilizing. © 2024 IEEE. |
产权排序 | 2 |
会议录 | 2024 IEEE Custom Integrated Circuits Conference, CICC 2024 - Proceedings
![]() |
会议录出版者 | Institute of Electrical and Electronics Engineers Inc. |
语种 | 英语 |
ISSN号 | 08865930 |
ISBN号 | 9798350394061 |
源URL | [http://ir.opt.ac.cn/handle/181661/97512] ![]() |
专题 | 西安光学精密机械研究所_瞬态光学技术国家重点实验室 |
通讯作者 | Qi, Nan |
作者单位 | 1.University of Chinese Academy of Sciences, Beijing, China 2.Xi'An Institute of Optics and Precision Mechanics, CAS, Xi'an, China; 3.Institute of Semiconductors Chinese Academy of Sciences (CAS), Beijing, China; |
推荐引用方式 GB/T 7714 | Chen, Sikai,Xue, Jintao,Chen, Yihan,et al. Attention-Guided CNN-Transformer Hybrid Network for Hyperspectral Image Classification[C]. 见:. Denver, CO, United states. 2024-04-21. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。