Dual hybrid frameworks combining graph convolutional network with decoding for covering location problem
文献类型:期刊论文
作者 | Zhang, Yao6; Wang, Shaohua1,7,8; Liang, Haojian2; Li, Xiao3; Wang, Zhenbo4; Lu, Hao5 |
刊名 | ISCIENCE
![]() |
出版日期 | 2024-05-17 |
卷号 | 27期号:5页码:20 |
DOI | 10.1016/j.isci.2024.109803 |
英文摘要 | The Covering Location Problem (CLP) is widely used for the efficient facility distribution. However, existing algorithms for this problem suffer from long computation times or suboptimal solutions. To address this, we propose two methods based on graph convolutional networks (GCN) to solve two types of covering location problems: the location set covering problem and the maximum covering location problem. The first method, GCN-Greedy, is a supervised algorithm that synergized with the Greedy algorithm as decoder. It designs a specialized loss function to train the model, tailored to the characteristics of the two covering location problems. The second method, reinforcement learning based on GCN with autoregressive decoder (GCN-AR-RL), represents a reinforcement learning framework that integrates a GCN encoder with an auto -regressive decoder. The experimental results of these models demonstrate the remarkable accuracy and performance advantages. Additionally, we apply these two models to the realistic dataset and achieve good performance. |
WOS关键词 | SET ; ALGORITHM ; SEARCH ; MODEL ; OPTIMIZATION ; ENUMERATION |
资助项目 | National Key R&D Program of China[2021YFB1407002] ; Talent Introduction Program Youth Project of the Chinese Academy of Sciences[E2Z10501] ; Innovation group project of the Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences[E33D0201-5] ; Henan Zhongmu County Research Project[E3C1050101] ; CBAS project 2023, Remote Sensing Big Data Analystics Project[E3E2051401] ; Beijing Chaoyang District Collaborative Innovation Project[E2DZ050100] |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
WOS记录号 | WOS:001240607200001 |
出版者 | CELL PRESS |
资助机构 | National Key R&D Program of China ; Talent Introduction Program Youth Project of the Chinese Academy of Sciences ; Innovation group project of the Key Laboratory of Remote Sensing and Digital Earth Chinese Academy of Sciences ; Henan Zhongmu County Research Project ; CBAS project 2023, Remote Sensing Big Data Analystics Project ; Beijing Chaoyang District Collaborative Innovation Project |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/206694] ![]() |
专题 | 区域可持续发展分析与模拟院重点实验室_外文论文 |
通讯作者 | Wang, Shaohua |
作者单位 | 1.Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China 2.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Peoples R China 3.Lanzhou Jiaotong Univ, Lanzhou 730070, Peoples R China 4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China 5.SuperMap Software Co Ltd, Beijing 100015, Peoples R China 6.Beihang Univ, Sch Software, Beijing 100191, Peoples R China 7.Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Remote Sensing & Digital Earth, Beijing 100094, Peoples R China 8.Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Sanya 572029, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Yao,Wang, Shaohua,Liang, Haojian,et al. Dual hybrid frameworks combining graph convolutional network with decoding for covering location problem[J]. ISCIENCE,2024,27(5):20. |
APA | Zhang, Yao,Wang, Shaohua,Liang, Haojian,Li, Xiao,Wang, Zhenbo,&Lu, Hao.(2024).Dual hybrid frameworks combining graph convolutional network with decoding for covering location problem.ISCIENCE,27(5),20. |
MLA | Zhang, Yao,et al."Dual hybrid frameworks combining graph convolutional network with decoding for covering location problem".ISCIENCE 27.5(2024):20. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。