中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Decoding air passenger flows: Identifying the role of network autocorrelation in air travel

文献类型:期刊论文

作者Zhang, Lu1,3; Gong, Jiaying2
刊名JOURNAL OF AIR TRANSPORT MANAGEMENT
出版日期2024-09-01
卷号120页码:102658
关键词Eigenvector spatial filtering Network autocorrelation Air transportation Negative binomial regression models Eurasian landmass
DOI10.1016/j.jairtraman.2024.102658
产权排序1
文献子类Article
英文摘要With the rapid expansion of the global aviation industry, especially in the Eurasian continent, understanding the factors driving interregional air passenger flow is of increasing importance. While most existing studies emphasize node-level and edge-level influencing factors such as economic scale, population size, and geographic distance, they often neglect the pivotal variable of network autocorrelation. This research is the first to introduce network autocorrelation within the Eurasian context and systematically analyze it using the Eigenvector Spatial Filtering Negative Binomial Gravity Model. Our findings highlight: (1) A significant network autocorrelation in the Eurasian continental aviation network. The eigenvector spatial filtering negative binomial regression model effectively captures this autocorrelation, considerably reducing model estimation bias. Specifically, the leading 3.28% of eigenvectors capture a high degree of this network autocorrelation. (2) The presence of network autocorrelation introduces estimation biases in related variables, resulting in underestimations of economic size, population size, visa restriction, and international trade, while overestimating cultural and institutional differences, geographical distance, colonial relationship. (3) Various factors affect the Eurasian continental sub-region's air passenger flows differently, indicating regional variations. This study takes a step towards improving our understanding of network autocorrelation in air passenger flows research.
WOS关键词GRAVITY MODEL ; INTERNATIONAL TOURISM ; SPATIAL AUTOCORRELATION ; INSTITUTIONAL DISTANCE ; CULTURAL DISTANCE ; TRANSPORT NETWORK ; DETERMINANTS ; DEMAND ; TRADE ; MIGRATION
WOS研究方向Transportation
WOS记录号WOS:001281906000001
出版者ELSEVIER SCI LTD
源URL[http://ir.igsnrr.ac.cn/handle/311030/206899]  
专题区域可持续发展分析与模拟院重点实验室_外文论文
通讯作者Zhang, Lu
作者单位1.Chinese Acad Sci, Key Lab Reg Sustainable Dev Modeling, Beijing, Peoples R China
2.Beijing Technol & Business Univ, Sch Econ, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Lu,Gong, Jiaying. Decoding air passenger flows: Identifying the role of network autocorrelation in air travel[J]. JOURNAL OF AIR TRANSPORT MANAGEMENT,2024,120:102658.
APA Zhang, Lu,&Gong, Jiaying.(2024).Decoding air passenger flows: Identifying the role of network autocorrelation in air travel.JOURNAL OF AIR TRANSPORT MANAGEMENT,120,102658.
MLA Zhang, Lu,et al."Decoding air passenger flows: Identifying the role of network autocorrelation in air travel".JOURNAL OF AIR TRANSPORT MANAGEMENT 120(2024):102658.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。