中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Marine sulfate sulfur isotopic evidence for enhanced terrestrial weathering and expansion of oceanic anoxia during the Devonian-Carboniferous transition

文献类型:期刊论文

作者Liu, Jiangsi2,3,4; Luo, Genming2,3; Algeo, Thomas J.2,3,5,6; Qie, Wenkun1; Yao, Le1; Huang, Junhua5; Xie, Shucheng2,3
刊名GLOBAL AND PLANETARY CHANGE
出版日期2024-08-01
卷号239页码:12
关键词South China Carbonate-associated sulfate Seawater sulfate Carbon cycle Hangenberg Event
ISSN号0921-8181
DOI10.1016/j.gloplacha.2024.104494
英文摘要The Hangenberg mass extinction during the Devonian-Carboniferous (D-C) transition represents one of the largest biodiversity losses of the Phanerozoic, while the underlying cause remains controversial. An improved understanding of the contemporaneous sulfur cycle can provide insights into the latest Devonian environmental changes that potentially affected marine biotas. Here, we report on a high-resolution chemostratigraphic study of the sulfur isotopic composition of carbonate-associated sulfate (CAS) through the D-C transition in the Long'an and Qilinzhai sections of South China. The delta S-34(CAS) profiles exhibit a long-term (i.e., >10(5) yr) negative excursion from +19.0 parts per thousand in the upper Lower Si. praesulcata Zone to +13.0 parts per thousand in the middle Upper Si. praesulcata Zone, and terminated with a recovery to 20.3 parts per thousand in the lower Si. sulcata - Si. duplicata zones, representing a depositional interval of similar to 0.9 Myr. In addition, this long-term negative excursion is punctuated by episodic sharp negative shifts. The negative delta S-34(CAS) excursion coincided with the end-Devonian biotic crisis, a positive shift in carbonate delta C-13, and negative shifts in bulk-sediment delta N-15 values and I/Ca ratios. Increasing organic carbon burial indicated by the positive shift in delta C-13 precludes decreased pyrite burial as an explanation for the negative shift of delta S-34(CAS), supported by intensified marine anoxia revealed by the negative shifts in delta N-15 and I/Ca. We attribute the long-term negative shift in delta S-34(CAS) to enhanced inputs of S-34-depleted riverine sulfate in conjunction with low seawater sulfate concentrations within the semi-restricted Yangtze Sea, whereas the transient negative spikes in delta S-34(CAS) were possibly caused by episodic upwelling and oxidation of H2S in expanded oceanic oxygen-minimum zones. In conjunction with the positive shift in delta C-13, the negative shift in delta S-34(CAS) supports a significant role for enhanced subaerial weathering in intensifying marine anoxia and triggering the biotic crises that occurred during the latest Devonian, the most likely driver of which was the spread of vascular (especially seed-bearing) land plants.
WOS研究方向Physical Geography ; Geology
语种英语
WOS记录号WOS:001255171600001
源URL[http://ir.gig.ac.cn/handle/344008/78339]  
专题同位素地球化学国家重点实验室
通讯作者Luo, Genming
作者单位1.Chinese Acad Sci, Nanjing Inst Geol & Paleontol, State Key Lab Palaeobiol & Stratig, Nanjing 210008, Peoples R China
2.China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China
3.China Univ Geosci, Sch Earth Sci, Wuhan 430074, Peoples R China
4.Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Isotope Geochem, Guangzhou 510640, Peoples R China
5.China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
6.Univ Cincinnati, Dept Geosci, Cincinnati, OH 45221 USA
推荐引用方式
GB/T 7714
Liu, Jiangsi,Luo, Genming,Algeo, Thomas J.,et al. Marine sulfate sulfur isotopic evidence for enhanced terrestrial weathering and expansion of oceanic anoxia during the Devonian-Carboniferous transition[J]. GLOBAL AND PLANETARY CHANGE,2024,239:12.
APA Liu, Jiangsi.,Luo, Genming.,Algeo, Thomas J..,Qie, Wenkun.,Yao, Le.,...&Xie, Shucheng.(2024).Marine sulfate sulfur isotopic evidence for enhanced terrestrial weathering and expansion of oceanic anoxia during the Devonian-Carboniferous transition.GLOBAL AND PLANETARY CHANGE,239,12.
MLA Liu, Jiangsi,et al."Marine sulfate sulfur isotopic evidence for enhanced terrestrial weathering and expansion of oceanic anoxia during the Devonian-Carboniferous transition".GLOBAL AND PLANETARY CHANGE 239(2024):12.

入库方式: OAI收割

来源:广州地球化学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。