中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Evaluation of precipitation forecasting methods and an advanced lightweight model

文献类型:期刊论文

作者Yang, Nan1,2; Wang, Chong1,2; Li, Xiaofeng1,2
刊名ENVIRONMENTAL RESEARCH LETTERS
出版日期2024-09-01
卷号19期号:9页码:12
关键词precipitation forecasting model analysis deep learning adversarial generative network
ISSN号1748-9326
DOI10.1088/1748-9326/ad661f
通讯作者Li, Xiaofeng(lixf@qdio.ac.cn)
英文摘要Precipitation forecasting is crucial for warning systems and disaster management. This study focuses on deep learning-based methods and categorizes them into three categories: Recurrent Neural Network (RNN-RNN-RNN), Convolutional Neural Network (CNN-CNN-CNN), and CNN-RNN-CNN methods. Then, we conduct a comprehensive evaluation of typical methods in these three categories using the SEVIR precipitation dataset. The results show that RNN-RNN-RNN suffers from instability in long-term forecasts due to error accumulation, CNN-CNN-CNN struggles to capture temporal signals but produces relatively stable forecasts, and CNN-RNN-CNN significantly increases model complexity and inherits the drawbacks of RNN, leading to worse forecasts. Here, we propose an advanced lightweight precipitation forecasting model (ALPF) based on CNN. Experimental results demonstrate that ALPF can effectively forecast spatial-temporal features, maintaining CNN's feature extraction capabilities while avoiding error accumulation in RNN's propagation. ALPF achieves long-term stable precipitation forecasts and can better capture large precipitation amounts.
WOS关键词EXTREME PRECIPITATION ; RADAR DATA ; ASSIMILATION
资助项目National Natural Science Foundation of Chinahttp://dx.doi.org/10.13039/501100001809[42306214] ; National Natural Science Foundation of China[SDBX2022026] ; Shandong Province Postdoctoral Innovative Talents Support Program[2023M733533] ; China Postdoctoral Science Foundation ; Special Research Assistant Project of the Chinese Academy of Sciences[XDB42000000] ; Strategic Priority Research Program of the Chinese Academy of Sciences[2019JZZY010102] ; Major Scientific and Technological Innovation Projects in Shandong Province
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
语种英语
WOS记录号WOS:001282698700001
出版者IOP Publishing Ltd
源URL[http://ir.qdio.ac.cn/handle/337002/186195]  
专题海洋研究所_海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Key Lab Ocean Observat & Forecasting, Key Lab Ocean Observat & Forecasting, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
推荐引用方式
GB/T 7714
Yang, Nan,Wang, Chong,Li, Xiaofeng. Evaluation of precipitation forecasting methods and an advanced lightweight model[J]. ENVIRONMENTAL RESEARCH LETTERS,2024,19(9):12.
APA Yang, Nan,Wang, Chong,&Li, Xiaofeng.(2024).Evaluation of precipitation forecasting methods and an advanced lightweight model.ENVIRONMENTAL RESEARCH LETTERS,19(9),12.
MLA Yang, Nan,et al."Evaluation of precipitation forecasting methods and an advanced lightweight model".ENVIRONMENTAL RESEARCH LETTERS 19.9(2024):12.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。