Exponential Approximate Invariance: Mapping the Depth to Basement From Gravity Anomalies
文献类型:期刊论文
作者 | Wang, Dingding1,2; Wang, Wanyin1,3,4; Fedi, Maurizio2; Florio, Giovanni2 |
刊名 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
出版日期 | 2024 |
卷号 | 62页码:12 |
关键词 | Gravity Geoscience and remote sensing Computational modeling Taylor series TV Surveys Surface treatment Basement depth exponential approximate invariance (EAI) free parameters gravity anomalies |
ISSN号 | 0196-2892 |
DOI | 10.1109/TGRS.2024.3418615 |
通讯作者 | Florio, Giovanni(gflorio@unina.it) |
英文摘要 | Mapping the depth to basement from gravity anomalies is an essential geophysical survey in sedimentary basins. We propose an iterative method to simultaneously estimate the basement relief, exponential density-depth model, and constant offset. The iterative process is achieved by applying the approximate invariance, which directly relates the basement depth to density parameters and constant offset. The method can be employed provided that there are a few known depth constraints. By testing the sediment and basement models, we find that the observation plane height and random noise of gravity anomalies have almost no impact on the stability of the method. However, the method is slightly affected by the number of constraints and is sensitive to the uncertainty of constraint depth. Finally, we successfully use the new method to map the depth to basement in the Pannonian basin using several depth constraints from drilling data and obtain the almost same density-depth model as that assumed based on drilling density. The method can be extended to recover the discontinuous basement relief and estimate other density-depth models, such as polynomial density function, once appropriate adjustments are made to the method. |
WOS关键词 | TOTAL VARIATION REGULARIZATION ; TO-BASEMENT ; SEDIMENTARY BASINS ; INVERSION ; DENSITY ; RELIEF ; CONVERGENCE ; CONSTRAINTS ; SEPARATION |
资助项目 | Scientific and Technological Project of China National Offshore Oil Corporation (CNOOC) ; Research Institute Company Ltd.[CCL2021RCPS0167KQN] ; Fundamental Research Fundsfor the Central Universities ; CHD[300102263719] ; China Scholarship Council |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:001262867300015 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://ir.qdio.ac.cn/handle/337002/186302] ![]() |
专题 | 海洋研究所_海洋地质与环境重点实验室 |
通讯作者 | Florio, Giovanni |
作者单位 | 1.Changan Univ, Sch Geol Engn & Geomat, Xian 710054, Peoples R China 2.Univ Napoli Federico II, Dipartimentodi Sci Terra Ambiente & Risorse, I-80126 Naples, Italy 3.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Geol & Environm, Qingdao 266071, Peoples R China 4.Offshore Oil & Gas Explorat, Natl Engn Res Ctr, Beijing 100028, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Dingding,Wang, Wanyin,Fedi, Maurizio,et al. Exponential Approximate Invariance: Mapping the Depth to Basement From Gravity Anomalies[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:12. |
APA | Wang, Dingding,Wang, Wanyin,Fedi, Maurizio,&Florio, Giovanni.(2024).Exponential Approximate Invariance: Mapping the Depth to Basement From Gravity Anomalies.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,12. |
MLA | Wang, Dingding,et al."Exponential Approximate Invariance: Mapping the Depth to Basement From Gravity Anomalies".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):12. |
入库方式: OAI收割
来源:海洋研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。