Fully Data-Driven Pseudo Label Estimation for Pointly-Supervised Panoptic Segmentation
文献类型:会议论文
作者 | Li, Jing1,2,4![]() ![]() ![]() |
出版日期 | 2024 |
会议日期 | 2024.2.22-2024.2.25 |
会议地点 | Vancouver |
关键词 | Panoptic Segmentation Pointly-Supervised Pseudo Label Estimation Data-Driven |
国家 | Canada |
英文摘要 | The core of pointly-supervised panoptic segmentation is estimating accurate dense pseudo labels from sparse point labels to train the panoptic head. Previous works generate pseudo labels mainly based on hand-crafted rules, such as connecting multiple points into polygon masks, or assigning the label information of labeled pixels to unlabeled pixels based on the artificially defined traversing distance. The accuracy of pseudo labels is limited by the quality of the hand-crafted rules (polygon masks are rough at object contour regions, and the traversing distance error will result in wrong pseudo labels). To overcome the limitation of hand-crafted rules, we |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/58783] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Zhang, Zhaoxiang |
作者单位 | 1.University of Chinese Academy of Sciences (UCAS) 2.Institute of Automation, Chinese Academy of Sciences (CASIA) 3.Centre for Artificial Intelligence and Robotics, HKISI CAS 4.State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS) 5.Tencent Maps, Tencent |
推荐引用方式 GB/T 7714 | Li, Jing,Fan, Junsong,Yang, Yuran,et al. Fully Data-Driven Pseudo Label Estimation for Pointly-Supervised Panoptic Segmentation[C]. 见:. Vancouver. 2024.2.22-2024.2.25. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。