中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Prototype learning for adversarial domain adaptation

文献类型:期刊论文

作者Fang, Yuchun1; Chen, Chen1; Zhang, Wei1; Wu, Jiahua1; Zhang, Zhaoxiang2; Xie, Shaorong1
刊名PATTERN RECOGNITION
出版日期2024-11-01
卷号155页码:12
关键词Domain adaptation Transfer learning Unsupervised learning Deep learning
ISSN号0031-3203
DOI10.1016/j.patcog.2024.110653
通讯作者Fang, Yuchun(ycfang@shu.edu.cn)
英文摘要Adversarial learning has been widely used in recent years to address the issue of domain shift in domain adaptation. However, this approach focuses on global cross -domain alignment and overlooks the alignment of class boundaries. To tackle this limitation, we introduce a novel method called PLADA. PLADA leverages prototype learning to align category distributions across domains. The prototypes in PLADA represent the source category distribution, which is constructed using labelled data and transferred to the target domain. In addition to adversarial learning for global domain -invariant feature learning, we propose the weighted prototype loss (WPL) to embed prototype information. WPL transforms the local category distribution alignment problem into a distance measurement between the prediction and prototypes, resulting in a more discriminative representation. Experimental results demonstrate that our proposed model performs comparably well on multiple classic domain adaptation tasks, showcasing the potential of PLADA.
资助项目National Natural Science Foundation of China[61976132] ; National Natural Science Foundation of China[61991411] ; National Natural Science Foundation of China[U1811461] ; Natural Science Foundation of Shanghai, China[19ZR1419200]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:001263808600001
出版者ELSEVIER SCI LTD
资助机构National Natural Science Foundation of China ; Natural Science Foundation of Shanghai, China
源URL[http://ir.ia.ac.cn/handle/173211/59222]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Fang, Yuchun
作者单位1.Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fang, Yuchun,Chen, Chen,Zhang, Wei,et al. Prototype learning for adversarial domain adaptation[J]. PATTERN RECOGNITION,2024,155:12.
APA Fang, Yuchun,Chen, Chen,Zhang, Wei,Wu, Jiahua,Zhang, Zhaoxiang,&Xie, Shaorong.(2024).Prototype learning for adversarial domain adaptation.PATTERN RECOGNITION,155,12.
MLA Fang, Yuchun,et al."Prototype learning for adversarial domain adaptation".PATTERN RECOGNITION 155(2024):12.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。