中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rethinking Global Context in Crowd Counting

文献类型:期刊论文

作者Guolei Sun1;  Yun Liu2;  Thomas Probst3;  Danda Pani Paudel1; Nikola Popovic1;  Luc Van Gool1
刊名Machine Intelligence Research
出版日期2024
卷号21期号:4页码:640-651
关键词Crowd counting vision transformer global context attention density map
ISSN号2731-538X
DOI10.1007/s11633-023-1475-z
英文摘要This paper investigates the role of global context for crowd counting. Specifically, a pure transformer is used to extract features with global information from overlapping image patches. Inspired by classification, we add a context token to the input sequence, to facilitate information exchange with tokens corresponding to image patches throughout transformer layers. Due to the fact that trans formers do not explicitly model the tried-and-true channel-wise interactions, we propose a token-attention module (TAM) to recalibrate encoded features through channel-wise attention informed by the context token. Beyond that, it is adopted to predict the total person count of the image through regression-token module (RTM). Extensive experiments on various datasets, including ShanghaiTech, UCF QNRF, JHU-CROWD++ and NWPU, demonstrate that the proposed context extraction techniques can significantly improve the per formance over the baselines.
源URL[http://ir.ia.ac.cn/handle/173211/58564]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.Computer Vision Lab, ETH Zürich, Zürich 8092, Switzerland
2.Institute for Infocomm Research, A*STAR, Singapore 138632, Singapore
3.Magic Leap, Zürich 8050, Switzerland
推荐引用方式
GB/T 7714
Guolei Sun, Yun Liu, Thomas Probst,et al. Rethinking Global Context in Crowd Counting[J]. Machine Intelligence Research,2024,21(4):640-651.
APA Guolei Sun, Yun Liu, Thomas Probst, Danda Pani Paudel,Nikola Popovic,& Luc Van Gool.(2024).Rethinking Global Context in Crowd Counting.Machine Intelligence Research,21(4),640-651.
MLA Guolei Sun,et al."Rethinking Global Context in Crowd Counting".Machine Intelligence Research 21.4(2024):640-651.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。