融合深度学习的贝叶斯滤波综述
文献类型:期刊论文
作者 | 张文安; 林安迪; 杨旭升; 俞立; 杨小牛 |
刊名 | 自动化学报
![]() |
出版日期 | 2024 |
卷号 | 50期号:8页码:1502-1516 |
关键词 | 深度学习 贝叶斯滤波 卡尔曼滤波 状态估计 状态空间模型 |
ISSN号 | 0254-4156 |
DOI | 10.16383/j.aas.c230457 |
英文摘要 | 当前动态系统呈现大型化、复杂化的趋势, 基于贝叶斯滤波的动态系统状态估计遇到一系列新的挑战. 随着深度学习在特征提取与模式识别等方面的优势与潜力不断显现, 深度学习与传统贝叶斯滤波相结合的研究也随之兴起. 为此, 梳理了不同领域融合深度学习的贝叶斯滤波方法的应用案例, 从中剖析不同类型动态系统下贝叶斯滤波存在的局限性和共性难题. 在此基础上, 总结了当前贝叶斯滤波存在的几类不确定性问题, 以深度学习的视角将这些问题归纳为特征提取和参数辨识两大基本问题, 进而介绍深度学习为贝叶斯滤波所提供的解决方案. 其次, 归纳整理了两类深度学习与贝叶斯滤波结合的具体方法, 着重介绍了深度卡尔曼滤波和融合深度学习的自适应卡尔曼滤波. 最后, 综合考虑深度学习方法和贝叶斯滤波方法的优势, 讨论了融合深度学习的贝叶斯滤波方法的开放问题和未来研究方向. |
源URL | [http://ir.ia.ac.cn/handle/173211/58820] ![]() |
专题 | 自动化研究所_学术期刊_自动化学报 |
推荐引用方式 GB/T 7714 | 张文安,林安迪,杨旭升,等. 融合深度学习的贝叶斯滤波综述[J]. 自动化学报,2024,50(8):1502-1516. |
APA | 张文安,林安迪,杨旭升,俞立,&杨小牛.(2024).融合深度学习的贝叶斯滤波综述.自动化学报,50(8),1502-1516. |
MLA | 张文安,et al."融合深度学习的贝叶斯滤波综述".自动化学报 50.8(2024):1502-1516. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。