Hierarchical Human Motion Intention Prediction for Increasing Efficacy of Human-Robot Collaboration
文献类型:期刊论文
作者 | Meng, Lingyi1,2; Yang, Lin3; Zheng, Enhao1![]() |
刊名 | IEEE ROBOTICS AND AUTOMATION LETTERS
![]() |
出版日期 | 2024-09-01 |
卷号 | 9期号:9页码:7637-7644 |
关键词 | Task analysis Robots Trajectory Muscles Predictive models Collaboration Sawing Human-robot collaboration human motion intent human motion prediction human motion decoding efficacy |
ISSN号 | 2377-3766 |
DOI | 10.1109/LRA.2024.3430131 |
通讯作者 | Zheng, Enhao(enhao.zheng@ia.ac.cn) |
英文摘要 | When humans and robots work together to accomplish tasks with dynamic uncertainty, the robots should perceive human motion intentions so as to cooperate with humans and increase efficacy. In this study, we propose a hierarchical motion intention prediction model for human-robot collaboration, in which the bottom level acquires human motion information, the middle level recognizes motion states and the high level predicts motion intentions. Compared with existing methods, our model fuses task-level human behavioral pattern prediction with instantaneous continuous motion intent decoding. Therefore, the robot controller can generate a collaborative trajectory in advance and adjust the key parameters (forces and velocities, etc.) in real time according to human motions. We quantitatively verify the proposed model with 10 subjects in the human-robot sawing task. The results show that the hierarchical model can effectively reduce human energy consumption and improve the average speed of the task. Meanwhile, subjective metrics indicate that subjects believe robots employing hierarchical models as capable of fostering improved cooperation and delivering greater assistance. Our study systematically proves that the proposed hierarchical model significantly enhanced the efficiency of human-robot co-manipulation, marking a step forward compared with existing works. Future studies will be focused on investigating more complex and general tasks. |
WOS关键词 | MANIPULATION ; STRATEGY |
资助项目 | National Natural Science Foundation of China[62073318] ; Youth Innovation Promotion Association CAS |
WOS研究方向 | Robotics |
语种 | 英语 |
WOS记录号 | WOS:001276400400015 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Youth Innovation Promotion Association CAS |
源URL | [http://ir.ia.ac.cn/handle/173211/59382] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Zheng, Enhao |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore |
推荐引用方式 GB/T 7714 | Meng, Lingyi,Yang, Lin,Zheng, Enhao. Hierarchical Human Motion Intention Prediction for Increasing Efficacy of Human-Robot Collaboration[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2024,9(9):7637-7644. |
APA | Meng, Lingyi,Yang, Lin,&Zheng, Enhao.(2024).Hierarchical Human Motion Intention Prediction for Increasing Efficacy of Human-Robot Collaboration.IEEE ROBOTICS AND AUTOMATION LETTERS,9(9),7637-7644. |
MLA | Meng, Lingyi,et al."Hierarchical Human Motion Intention Prediction for Increasing Efficacy of Human-Robot Collaboration".IEEE ROBOTICS AND AUTOMATION LETTERS 9.9(2024):7637-7644. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。