中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
VistaRAG: Toward Safe and Trustworthy Autonomous Driving Through Retrieval-Augmented Generation

文献类型:期刊论文

作者Dai, Xingyuan2,3,4; Guo, Chao3; Tang, Yun5; Li, Haichuan1; Wang, Yutong3; Huang, Jun6; Tian, Yonglin3; Xia, Xin7; Lv, Yisheng3; Wang, Fei-Yue8
刊名IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
出版日期2024-04-01
卷号9期号:4页码:4579-4582
关键词Databases Autonomous vehicles Decision making Safety Data models Real-time systems Reliability Intelligent vehicles foundation models retrieval- augmented generation (RAG)
ISSN号2379-8858
DOI10.1109/TIV.2024.3396450
通讯作者Dai, Xingyuan(xingyuan.dai@ia.ac.cn)
英文摘要Autonomous driving based on foundation models has recently garnered widespread attention. However, the risk of hallucinations inherent in foundation models could compromise the safety and reliability of autonomous driving systems. This letter, as part of a series of reports from the Distributed/Decentralized Hybrid Workshop on Foundation/Infrastructure Intelligence (DHW-FII), aims to tackle these issues. We introduce VistaRAG, which integrates retrieval-augmented generation (RAG) technologies into autonomous driving systems based on foundation models, to address the inherent reliability challenges in decision-making. VistaRAG employs a dynamic retrieval mechanism to access highly relevant driving experience, real-time road network status, and other contextual information from external databases. This aids foundation models in informed reasoning and decision-making, thereby enhancing the safety and trustworthiness of foundation-model-based autonomous driving systems under complex traffic scenarios.
资助项目National Key R&D Program of China
WOS研究方向Computer Science ; Engineering ; Transportation
语种英语
WOS记录号WOS:001250038700013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key R&D Program of China
源URL[http://ir.ia.ac.cn/handle/173211/59121]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进控制与自动化团队
通讯作者Dai, Xingyuan
作者单位1.Univ Turku, Dept Comp, Turku 20014, Finland
2.Changan Univ, Engn Res Ctr Highway Infrastruct Digitalizat, Xian 710064, Peoples R China
3.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
4.Shanghai Artificial Intelligence Lab, Shanghai 20030, Peoples R China
5.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
6.Macau Univ Sci & Technol, Macau 999078, Peoples R China
7.UCLA, UCLA Mobil Lab, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
8.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Dai, Xingyuan,Guo, Chao,Tang, Yun,et al. VistaRAG: Toward Safe and Trustworthy Autonomous Driving Through Retrieval-Augmented Generation[J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,2024,9(4):4579-4582.
APA Dai, Xingyuan.,Guo, Chao.,Tang, Yun.,Li, Haichuan.,Wang, Yutong.,...&Wang, Fei-Yue.(2024).VistaRAG: Toward Safe and Trustworthy Autonomous Driving Through Retrieval-Augmented Generation.IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,9(4),4579-4582.
MLA Dai, Xingyuan,et al."VistaRAG: Toward Safe and Trustworthy Autonomous Driving Through Retrieval-Augmented Generation".IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 9.4(2024):4579-4582.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。