Semantic Space Analysis for Zero-Shot Learning on SAR Images
文献类型:期刊论文
作者 | Liu, Bo1![]() ![]() ![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2024-07-01 |
卷号 | 16期号:14页码:13 |
关键词 | semantic space analysis zero-shot learning SAR target classification |
DOI | 10.3390/rs16142627 |
通讯作者 | Zeng, Hui(hzeng@ustb.edu.cn) |
英文摘要 | Semantic feature space plays a bridging role from 'seen classes' to 'unseen classes' in zero-shot learning (ZSL). However, due to the nature of SAR distance-based imaging, which is drastically different from that of optical imaging, how to construct an appropriate semantic space for SAR ZSL is still a tricky and less well-addressed issue. In this work, three different semantic feature spaces, constructed using natural language, remote sensing optical images, and web optical images, respectively, are explored. Furthermore, three factors, i.e., model capacity, dataset scale, and pre-training, are investigated in semantic feature learning. In addition, three datasets are introduced for the evaluation of SAR ZSL. Experimental results show that the semantic space constructed using remote sensing images is better than the other two and that the quality of semantic space can be affected significantly by factors such as model capacity, dataset scale, and pre-training schemes. |
资助项目 | National Natural Science Foundation of China[61991423] ; National Natural Science Foundation of China[62273034] ; Scientific and Technological Innovation Foundation of Foshan[BK21BF004] ; Open Project Program of Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing Technology and Business University |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:001277370200001 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China ; Scientific and Technological Innovation Foundation of Foshan ; Open Project Program of Key Laboratory of Industrial Internet and Big Data, China National Light Industry, Beijing Technology and Business University |
源URL | [http://ir.ia.ac.cn/handle/173211/59379] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_机器人视觉团队 |
通讯作者 | Zeng, Hui |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.China Natl Light Ind, Key Lab Ind Internet & Big Data, Beijing 100048, Peoples R China 3.Univ Sci & Technol Beijing, Beijing Engn Res Ctr Ind Spectrum Imaging, Sch Automat & Elect Engn, Beijing 100083, Peoples R China 4.Univ Sci & Technol Beijing, Shunde Innovat Sch, Foshan 528399, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Bo,Xu, Jiping,Zeng, Hui,et al. Semantic Space Analysis for Zero-Shot Learning on SAR Images[J]. REMOTE SENSING,2024,16(14):13. |
APA | Liu, Bo,Xu, Jiping,Zeng, Hui,Dong, Qiulei,&Hu, Zhanyi.(2024).Semantic Space Analysis for Zero-Shot Learning on SAR Images.REMOTE SENSING,16(14),13. |
MLA | Liu, Bo,et al."Semantic Space Analysis for Zero-Shot Learning on SAR Images".REMOTE SENSING 16.14(2024):13. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。