Chinese Title Generation for Short Videos: Dataset, Metric and Algorithm
文献类型:期刊论文
作者 | Zhang, Ziqi1,2![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
![]() |
出版日期 | 2024-07-01 |
卷号 | 46期号:7页码:5192-5208 |
关键词 | Videos Task analysis Measurement Semantics Benchmark testing Electronic commerce Annotations Video and language short video multi-modal benchmark video titling title evaluation text-video retrieval |
ISSN号 | 0162-8828 |
DOI | 10.1109/TPAMI.2024.3365739 |
通讯作者 | Li, Bing(bli@nlpr.ia.ac.cn) |
英文摘要 | Previous work for video captioning aims to objectively describe the video content but the captions lack human interest and attractiveness, limiting its practical application scenarios. The intention of video title generation (video titling) is to produce attractive titles, but there is a lack of benchmarks. This work offers CREATE, the first large-scale Chinese shoRt vidEo retrievAl and Title gEneration dataset, to assist research and applications in video titling, video captioning, and video retrieval in Chinese. CREATE comprises a high-quality labeled 210 K dataset and two web-scale 3 M and 10 M pre-training datasets, covering 51 categories, 50K+ tags, 537K+ manually annotated titles and captions, and 10M+ short videos with original video information. This work presents ACTEr, a unique Attractiveness-Consensus-based Title Evaluation, to objectively evaluate the quality of video title generation. This metric measures the semantic correlation between the candidate (model-generated title) and references (manual-labeled titles) and introduces attractive consensus weights to assess the attractiveness and relevance of the video title. Accordingly, this work proposes a novel multi-modal ALignment WIth Generation model, ALWIG, as one strong baseline to aid future model development. With the help of a tag-driven video-text alignment module and a GPT-based generation module, this model achieves video titling, captioning, and retrieval simultaneously. We believe that the release of the CREATE dataset, ACTEr metric, and ALWIG model will encourage in-depth research on the analysis and creation of Chinese short videos. |
资助项目 | National Key Research and Development Program of China |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:001240147800016 |
出版者 | IEEE COMPUTER SOC |
资助机构 | National Key Research and Development Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/59076] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
通讯作者 | Li, Bing |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 3.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100045, Peoples R China 4.ARC Lab Tencent PCG, Shenzhen 518000, Peoples R China 5.Huake Xingsheng Elect Power Engn Technol, Beijing 100045, Peoples R China 6.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 7.Birkbeck Coll, Comp Sci & Informat Syst, London WC1E 7HX, England |
推荐引用方式 GB/T 7714 | Zhang, Ziqi,Ma, Zongyang,Yuan, Chunfeng,et al. Chinese Title Generation for Short Videos: Dataset, Metric and Algorithm[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,46(7):5192-5208. |
APA | Zhang, Ziqi.,Ma, Zongyang.,Yuan, Chunfeng.,Chen, Yuxin.,Wang, Peijin.,...&Maybank, Stephen.(2024).Chinese Title Generation for Short Videos: Dataset, Metric and Algorithm.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,46(7),5192-5208. |
MLA | Zhang, Ziqi,et al."Chinese Title Generation for Short Videos: Dataset, Metric and Algorithm".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 46.7(2024):5192-5208. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。