DCFNet: Discriminant Correlation Filters Network for Visual Tracking
文献类型:期刊论文
作者 | Hu, Wei-Ming1![]() ![]() ![]() |
刊名 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
![]() |
出版日期 | 2024-05-01 |
卷号 | 39期号:3页码:691-714 |
关键词 | correlation filter convolutional neural network (CNN) visual tracking |
ISSN号 | 1000-9000 |
DOI | 10.1007/s11390-023-3788-3 |
通讯作者 | Hu, Wei-Ming(wmhu@nlpr.ia.ac.cn) ; Wang, Qiang(qiang.wang@nlpr.ia.ac.cn) ; Gao, Jin(jin.gao@nlpr.ia.ac.cn) ; Li, Bing(bli@nlpr.ia.ac.cn) ; Maybank, Stephen(sjmaybank@dcs.bbk.ac.uk) |
英文摘要 | CNN (convolutional neural network) based real time trackers usually do not carry out online network update in order to maintain rapid tracking speed. This inevitably influences the adaptability to changes in object appearance. Correlation filter based trackers can update the model parameters online in real time. In this paper, we present an end-to-end lightweight network architecture, namely Discriminant Correlation Filter Network (DCFNet). A differentiable DCF (discriminant correlation filter) layer is incorporated into a Siamese network architecture in order to learn the convolutional features and the correlation filter simultaneously. The correlation filter can be efficiently updated online. In previous work, we introduced a joint scale-position space to the DCFNet, forming a scale DCFNet which carries out the predictions of object scale and position simultaneously. We combine the scale DCFNet with the convolutional-deconvolutional network, learning both the high-level embedding space representations and the low-level fine-grained representations for images. The adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embedding are complementary for visual tracking. The back-propagation is derived in the Fourier frequency domain throughout the entire work, preserving the efficiency of the DCF. Extensive evaluations on the OTB (Object Tracking Benchmark) and VOT (Visual Object Tracking Challenge) datasets demonstrate that the proposed trackers have fast speeds, while maintaining tracking accuracy. |
WOS关键词 | OBJECT TRACKING |
资助项目 | National Key Research and Development Program of China[2020AAA0105802] ; National Key Research and Development Program of China[2020AAA0105800] ; National Natural Science Foundation of China[62036011] ; National Natural Science Foundation of China[62192782] ; National Natural Science Foundation of China[61721004] ; National Natural Science Foundation of China[U2033210] ; Beijing Natural Science Foundation[L223003] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001274075100002 |
出版者 | SPRINGER SINGAPORE PTE LTD |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/59339] ![]() |
专题 | 自动化研究所_模式识别国家重点实验室_视频内容安全团队 |
通讯作者 | Hu, Wei-Ming; Wang, Qiang; Gao, Jin; Li, Bing; Maybank, Stephen |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 2.Birkbeck Coll, Dept Comp Sci & Informat Syst, London WC1E 7HX, England |
推荐引用方式 GB/T 7714 | Hu, Wei-Ming,Wang, Qiang,Gao, Jin,et al. DCFNet: Discriminant Correlation Filters Network for Visual Tracking[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2024,39(3):691-714. |
APA | Hu, Wei-Ming,Wang, Qiang,Gao, Jin,Li, Bing,&Maybank, Stephen.(2024).DCFNet: Discriminant Correlation Filters Network for Visual Tracking.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,39(3),691-714. |
MLA | Hu, Wei-Ming,et al."DCFNet: Discriminant Correlation Filters Network for Visual Tracking".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39.3(2024):691-714. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。