MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation
文献类型:期刊论文
作者 | Yang, Lei1![]() ![]() ![]() |
刊名 | IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
![]() |
出版日期 | 2024-07-01 |
卷号 | 28期号:7页码:4072-4083 |
关键词 | Surgical instrument segmentation transformer dual-branch encoder feature fusion |
ISSN号 | 2168-2194 |
DOI | 10.1109/JBHI.2023.3344716 |
通讯作者 | Bian, Guibin(guibin.bian@ia.ac.cn) ; Liu, Yanhong(liuyh@zzu.edu.cn) |
英文摘要 | Minimally invasive surgery, which relies on surgical robots and microscopes, demands precise image segmentation to ensure safe and efficient procedures. Nevertheless, achieving accurate segmentation of surgical instruments remains challenging due to the complexity of the surgical environment. To tackle this issue, this paper introduces a novel multiscale dual-encoding segmentation network, termed MSDE-Net, designed to automatically and precisely segment surgical instruments. The proposed MSDE-Net leverages a dual-branch encoder comprising a convolutional neural network (CNN) branch and a transformer branch to effectively extract both local and global features. Moreover, an attention fusion block (AFB) is introduced to ensure effective information complementarity between the dual-branch encoding paths. Additionally, a multilayer context fusion block (MCF) is proposed to enhance the network's capacity to simultaneously extract global and local features. Finally, to extend the scope of global feature information under larger receptive fields, a multi-receptive field fusion (MRF) block is incorporated. Through comprehensive experimental evaluations on two publicly available datasets for surgical instrument segmentation, the proposed MSDE-Net demonstrates superior performance compared to existing methods. |
WOS关键词 | IMAGE SEGMENTATION ; SURGERY ; COLOR ; ROBOT |
资助项目 | National Key Research & Development Project of China[2020YFB1313701] ; National Natural Science Foundation of China[62003309] |
WOS研究方向 | Computer Science ; Mathematical & Computational Biology ; Medical Informatics |
语种 | 英语 |
WOS记录号 | WOS:001263692800013 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research & Development Project of China ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/59219] ![]() |
专题 | 智能机器人系统研究 |
通讯作者 | Bian, Guibin; Liu, Yanhong |
作者单位 | 1.Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China 2.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Lei,Gu, Yuge,Bian, Guibin,et al. MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2024,28(7):4072-4083. |
APA | Yang, Lei,Gu, Yuge,Bian, Guibin,&Liu, Yanhong.(2024).MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,28(7),4072-4083. |
MLA | Yang, Lei,et al."MSDE-Net: A Multi-Scale Dual-Encoding Network for Surgical Instrument Segmentation".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 28.7(2024):4072-4083. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。