GRLN: Gait Refined Lateral Network for gait recognition
文献类型:期刊论文
作者 | Song, Yukun1; Mao, Xin4; Feng, Xuxiang; Wang, Changwei3![]() ![]() ![]() ![]() |
刊名 | DISPLAYS
![]() |
出版日期 | 2024-09-01 |
卷号 | 84页码:8 |
关键词 | Adaptive feature refinement module Coarse-to-fine Gait recognition Horizontally stable mapping |
ISSN号 | 0141-9382 |
DOI | 10.1016/j.displa.2024.102776 |
通讯作者 | Zhang, Man(zhangman@bupt.edu.cn) |
英文摘要 | Gait recognition aims to identify individuals at a distance based on their biometric gait patterns. While offering flexibility in network input, existing set -based methods often overlook the potential of fine-grained local feature by solely utilizing global gait feature and fail to fully exploit the communication between silhouette -level and set -level features. To alleviate this issue, we propose Gait Refined Lateral Network(GRLN), featuring plug -and -play Adaptive Feature Refinement modules (AFR) that extract discriminative features progressively from silhouette -level and set -level representations in a coarse -to -fine manner at various network depths. AFR can be widely applied in set -based gait recognition models to substantially enhance their gait recognition performance. To align with the extracted refined features, we introduce Horizontal Stable Mapping (HSM), a novel mapping technique that reduces model parameters while improving experimental results. To demonstrate the effectiveness of our method, we evaluate GRLN on two gait datasets, achieving the highest recognition rate among all set -based methods. Specifically, GRLN demonstrates an average improvement of 1.15% over the state-of-the-art set -based method on CASIA-B. Especially in the coat -wearing condition, GRLN exhibits a 5% improvement in performance compared to the contrast method GLN. |
资助项目 | Beijing Natural Science Foundation[JQ23014] ; Science and Disruptive Technology Program, AIRCAS[E2Z218020F] ; National Natural Science Foundation of China[62271074] ; National Natural Science Foundation of China[62171321] ; National Natural Science Foundation of China[62162044] |
WOS研究方向 | Computer Science ; Engineering ; Instruments & Instrumentation ; Optics |
语种 | 英语 |
WOS记录号 | WOS:001259607000001 |
出版者 | ELSEVIER |
资助机构 | Beijing Natural Science Foundation ; Science and Disruptive Technology Program, AIRCAS ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/59157] ![]() |
专题 | 模式识别国家重点实验室_三维可视计算 |
通讯作者 | Zhang, Man |
作者单位 | 1.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China 2.Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China 4.Beijing Zitiao Network Technol Co Ltd, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Song, Yukun,Mao, Xin,Feng, Xuxiang,et al. GRLN: Gait Refined Lateral Network for gait recognition[J]. DISPLAYS,2024,84:8. |
APA | Song, Yukun.,Mao, Xin.,Feng, Xuxiang.,Wang, Changwei.,Xu, Rongtao.,...&Xu, Shibiao.(2024).GRLN: Gait Refined Lateral Network for gait recognition.DISPLAYS,84,8. |
MLA | Song, Yukun,et al."GRLN: Gait Refined Lateral Network for gait recognition".DISPLAYS 84(2024):8. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。