Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data
文献类型:期刊论文
作者 | Zhang, Huiming6; Fu, Jingqiao6; Li, Feixiang6; Chen, Qian6; Ye, Tao4,5; Zhang, Yili1,2,3; Yang, Xuchao6 |
刊名 | ECOLOGICAL INDICATORS
![]() |
出版日期 | 2024-09-01 |
卷号 | 166页码:13 |
关键词 | Population spatialization Ensemble model Nighttime light Tibetan Plateau Location -based services data |
ISSN号 | 1470-160X |
DOI | 10.1016/j.ecolind.2024.112307 |
英文摘要 | The Tibetan Plateau, known for its high elevation and sparse population distribution, heavily depends on gridded population data to enhance disaster prevention and management strategies. This study utilizes multi-source physical geographic and socio-economic factors to delineate the population distribution across the plateau. Using data from the seventh National Census in 2020, we apply three individual machine learning methods (Random Forest, GBDT, and XGBoost) and two multi-model ensemble methods (weighted average ensemble and stacking ensemble) to spatialize the population data into a 100-meter grid. The results reveal that the spatialization accuracy of all models exceeds that of the WorldPop dataset. Specifically, the Random Forest model (RMSE = 4061.09, nRMSE = 44.71 %) and the stacking ensemble model (RMSE = 4094.47, nRMSE = 44.26 %) demonstrate the highest accuracy among the individual and ensemble models, respectively. Emphasizing the importance of integrating multi-source big data, Tencent location-based services data emerges as a crucial variable across all models. This study highlights the effectiveness of ensemble models and multi-source big data in improving population mapping accuracy, especially in regions with complex terrains. |
WOS关键词 | NIGHTTIME LIGHT ; LAND-COVER ; REGION ; DEGRADATION |
资助项目 | Second Tibetan Plateau Scientific Expedition and Research program (STEP)[2019QZKK0603] |
WOS研究方向 | Biodiversity & Conservation ; Environmental Sciences & Ecology |
语种 | 英语 |
WOS记录号 | WOS:001266388600001 |
出版者 | ELSEVIER |
资助机构 | Second Tibetan Plateau Scientific Expedition and Research program (STEP) |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/207715] ![]() |
专题 | 陆地表层格局与模拟院重点实验室_外文论文 |
通讯作者 | Yang, Xuchao |
作者单位 | 1.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 2.CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China 3.Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China 4.Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China 5.Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol E, Beijing 100875, Peoples R China 6.Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Huiming,Fu, Jingqiao,Li, Feixiang,et al. Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data[J]. ECOLOGICAL INDICATORS,2024,166:13. |
APA | Zhang, Huiming.,Fu, Jingqiao.,Li, Feixiang.,Chen, Qian.,Ye, Tao.,...&Yang, Xuchao.(2024).Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data.ECOLOGICAL INDICATORS,166,13. |
MLA | Zhang, Huiming,et al."Fine-scale population mapping on Tibetan Plateau using the ensemble machine learning methods and multisource data".ECOLOGICAL INDICATORS 166(2024):13. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。